
Advanced Training Set Generator for Use
in Self-Organizing Neural Networks

Natalia Pasturczak, Rafał Długosz

Abstract— Success in training of artificial neural net-
works (ANNs) depends on properly selected training
data set. The problem is not trivial, especially in sit-
uations in which the structure of data to be classified by
the neural network (NN) after completing the learning
phase is not known. To cope with this problem, one of
the solutions is to conduct comprehensive tests of the
ANN with training it with data sets that differ in the
distribution of the learning patterns in the input data
space. In order to prepare such sets, appropriate tools
are required that introduce the ability of a broad pa-
rameterization. In the proposed work, an advanced data
generator has been developed, which based on a specific
variability of particular predefined parameters, gener-
ates a collection of learning data sets. The obtained sets
are then used to optimize the learning process of selected
algorithms of self-organizing ANNs. The NN then au-
tomatically retrieves subsequent data sets from specific
location, and as a response generates reports with an as-
sessment of the quality of the learning process. The aim
of the proposed investigations is to optimize the struc-
ture of selected ANNs, so as to obtain their minimum
complexity, important in case of their hardware imple-
mentation.

I. Introduction

The aim of this work was to implement a syn-
thetic data generator that is able to produce multi-
dimensional numerical datasets which could be used to
optimize the learning process of the ANN, especially
self-organizing neural networks, often called Self Orga-
nizing Maps (SOMs).
An interest in synthetic data generation is related to

the demand for large amounts of data for validation and
training artificial intelligence models. The ability to
generate data with predefined features allows to repli-
cate specific data properties, simulate general trends,
test less typical cases and to introduce a parameteri-
zation to particular data classes. Generating real data
in a sufficient amount and variability is expensive and
time-consuming, while synthetic data is quite cheap in
production. Certainly, a more convenient and faster
solution is to use the generator.

N. Pasturczak in with Bydgoszcz University of Science and
Technology, Faculty of Telecommunication, Computer Science
and Electrical Engineering ul. Kaliskiego 7, 85-796, Bydgoszcz,
Poland, E-mail: nalia3486@gmail.com
R. Długosz is with Bydgoszcz University of Science and Tech-

nology, Faculty of Telecommunication, Computer Science and
Electrical Engineering ul. Kaliskiego 7, 85-796, Bydgoszcz,
Poland, and with Aptiv Services Poland ul. Podgórki Tynieckie
2, 30-399, Kraków, Poland E-mail: rafal.dlugosz@gmail.com and
rafal.dlugosz@aptiv.com

The proposed solution allows for generation of data
sets that may differ in the number of data classes, the
number of learning patterns in each class, as well as the
distribution of learning patterns in particular classes.
In the proposed solution, the location of data classes
is also one of important parameters. This allows for
precise tests to be carried out to show how well the
ANN is able to distinguish particular data classes from
each other. The implemented tool allows once gener-
ated data classes with a specific distribution of training
patterns to be appropriately placed in the input data
space. As a result, particular classes may be located far
from each other, but may also partially overlap with
each other. Obtaining such training data under real
conditions is very difficult. Particular data classes may
be generated based on normal or uniform distribution
of the learning patterns.
The motivation behind the presented works on the

tool for generating training data are the investiga-
tions on the ability of hardware implementation of self-
organizing neural networks in CMOS technology. In
this case, once implemented, the architecture of the
neural network in the chip cannot be modified. For
this reason, at the design stage of such a network, com-
prehensive investigations are needed to verify the cor-
rectness of the selection of basic network parameters,
such as the number of neurons for a given problem, the
number of weights in particular neurons, the network
topology, the type of the neighborhood function, etc.
The paper is organized as follows. Next section

briefly presents the basics of classic self-organizing net-
works that are tested with the training sets generated
with the realized tool. Selected solutions behind the
proposed tool are presented in the following section.
Then we present examples of resultants training data
sets generated by the proposed tool. Conclusions are
included in the last section.

II. Self-organizing neural networks

Self-organizing maps (SOMs) that belong to artifi-
cial neural networks and systems, may be trained using
various learning rules. They include such algorithms as
Winner Takes All (WTA), Winner Takes Most (WTM)
proposed by Kohonen in [1], Neural Gas, a “fisherman”
algorithm proposed by Lee and Verleysen in [2] with
some modifications proposed in [3]. In this Section we
briefly present basics of the WTM algorithm. We fo-



cus on this solution, as the remaining algorithms have
evolved from this solution in different ways or are a
special case of it.
In all these algorithms, a set of learning patternsX(l)

that are vectors in an n-dimensional space <n is pre-
sented to the ANN in a random fashion. For each learn-
ing pattern X a new, lth, learning cycle starts. It is
composed of several stages. First the ANN computes
a distance between a given pattern and the weights
vectors Wj(l) in particular neurons belonging to the
ANN. The neuron, whose weights vector is the closest
to a given learning pattern becomes a winner. Follow-
ing steps in the learning cycle differ between particular
learning algorithms. In the WTA algorithm only the
winning neuron is allowed to adapt its weights. The
situation is different in the WTM algorithm, in which,
additionally, the neighboring neurons of the winner can
adapt their weights, but with different intensity, de-
pending on their topological distance from the winner.
In this case the adaptation process is performed in ac-
cordance with the following formula:

Wj(l+1) =Wj(l)+η(k)G(R, d(i, j))[X(l)−Wj(l)] (1)

The parameter η(k) is in this formula a learning rate.
It directly defines the allowable intensity of modifica-
tion of the weight values. The neighboring neurons are
trained with different intensities that results from the
applied neighborhood function G(), depending on a dis-
tance d(i, j), between the winning neuron, i, and a given
jth neuron in the SOM.

A. Neighborhood function

The neighborhood function (NF) is one of important
parameters that impacts both the quality of the learn-
ing process and the hardware complexity of the imple-
mented ANN. Kohonen in his works proposed a rectan-
gular NF (RNF) [1], which can be expressed as follows:

G(R, d(i, j)) =

{
1 if d(i, j) ≤ R
0 if d(i, j) > R

(2)

In the formula above, R is the neighborhood size that
decreases after during the learning process. In this so-
lution, all neighboring neurons whose distance does not
exceed R are trained with equal intensities. All others
neurons do not change their weights. Our investigations
show that the RNF is sufficient only in case of relatively
small SOMs composed of 100-250 neurons. Much better
results may be achieved in case of using the Gaussian
NF (GNF) [4], which can be expressed as follows:

G(R, d(i, j)) = exp

(
−d

2(i, j)

2R2

)
(3)

The minus sign in the equation above results from the
fact that the value of the G() function decreases with

increasing the distance between the winning neuron and
the neuron for which the function is computed.
In case of the hardware implementation, the GNF is

not an optimal solution, due to large hardware complex-
ity. It requires complex mathematical operations that
include division and exponential operations [5]. For this
reason, in our former works we proposed a substitution
of the GNF with a triangular NF (TNF). This solu-
tion is much simpler in the hardware implementation,
as it requires only a single multiplication and shifting
the bits [5]. This function may be expressed as follows:

G(R, d(i, j)) =

{
−a(η0) · (R− d(i, j)) for d(i, j) ≤ R
0 for d(i, j) > R

(4)

where a() is the steepness of the triangular function and
η0 is the learning rate of the winning neuron. The val-
ues of both these parameters are reduced toward zero
during the learning process. The TNF allows to reach
the learning quality comparable with the GNF, while
its hardware complexity is reduced by 95 % when com-
pared to the GNF [5].

B. Topology of the SOM

All the NFs described above can be used with any
network topology. The topology is yet another parame-
ter that determines the number of neighboring neurons
for each neuron in the SOM. Typical topologies include
the ones with 8, 6 and 4 neighboring neurons.
In general, to summarize this part of work, various

training sets are needed, additionally strongly parame-
terizable that allows to test various combinations of the
described parameters with different number of neurons
in the SOM. For this reason, it was necessary to create
a tool that allows to easily generate such data sets.

III. Proposed tool for data generation

In the proposed tool, by configuring a set of parame-
ters it is possible to generate a collection of customized
training data sets. These parameters include the type of
generated data distribution (normal or uniform), classes
shape (e.g. square, circle, ring), data range, number of
clusters, dimension of data set, data size, distance be-
tween particular classes, as well as coordinates of the
positions of the central points of particular classes. Pa-
rameters are set in files so it is possible to run program
multiple times and get a lot of datasets with specific
properties. Of course, all parameters are optional, how-
ever, by manipulating the listed parameters it is possi-
ble to generate large amount of data with the expected
features and shapes with wide range of difficulty levels
to be classified by ANNs. For some shapes and distri-
butions there are also additional parameters as radius,
peak and spread of the data.



Fig. 1. Visualization of a synthetically generated dataset from
normal distribution

Fig. 2. Visualization of a synthetically generated dataset in a
shape of sphere with 7 centers.

To generate clusters that have particular shapes
as (hyper)sphere or hollow (hyper)cylinder additional
modifications are used.
Random points in a multi-dimensional sphere are uni-

formly generated based on “’Random Points in an n-
Dimensional Hypersphere” [6]. In this case, first of all,
random function generates normal distributed points.
Then the incomplete gamma function is used to map
generated points radially within given radius and given
sphere center, so points are uniformly distributed.
In order to generate hollow n-dimensional hollow

cylinder two values are needed: rinner and router. These
two parameters may be customized or randomly gener-
ated. The rinner parameter is the length of the line from
the center to its inner edge and analogously the router
parameter is the length of the line from the center to its
outer edge. The randomly generated value from 0.1 to
1 is multiplied by the distance between the outer and
the inner radius, as follows:

r =
√
rand(0, 1) · (r2outer − r2inner) + r2inner (5)

Fig. 3. Visualization I of a synthetically generated dataset in a
shape of a hollow cylinder with 5 centers.

Fig. 4. Visualization II of a synthetically generated dataset in a
shape of a hollow cylinder with 5 centers.

The Cartesian coordinates x and y are then converted
into the spherical ones:

θ = rand(0, 1) · 2 · π (6)

As a result, two coordinates of points (learning pat-
terns) are generated:

point = (centerx + r · cos(θ), centery + r · sin(θ)) (7)

If the points are produced in more than two dimen-
sions then the remaining points’ coordinates are gener-
ated using the uniform distribution without the conver-
sion.

IV. Implementation and results

In this section we present selected results obtained
by the use of the developed tool for learning data gen-
eration. Data can be generated in any space. Here we
have limited our analysis to three dimensions, to allow
for better visualization of the results. Selected examples



Fig. 5. Visualization III of a synthetically generated dataset in
a shape of a hollow cylinder with 5 centers.

Fig. 6. Visualization of a synthetically generated dataset in a
shape of hollow cylinders with 6 centers.

are shown in Figs. 1 to 6. The implemented tool allows
to generate any number of data classes. For a better
visualization, we have limited the number of classes to
small values. Each of them is additionally marked with
a different color.
Fig. 1 presents a visualization of a synthetically

generated data set from the normal distribution. In
this example, learning data were generated in the 3-
dimensional data space. Since the centers of the classes
are located close to each other, the three visible clusters
are overlapping. In this example, different numbers of
the learning patterns are in each class. One of them is
much smaller than the remaining two, so it is harder
to distinguish all three clusters properly. Such data are
usually particularly difficult to distinguish by a neural
network.
Fig. 2 shows a visualization of a synthetically gener-

ated data set. In this case, seven spherical-shaped data
classes were generated. Data were generated in the 3-
dimensional data space. Radii of particular classes are
random values, varying from 2 to 3. The coordinates of
the centers of particular classes are also random values.
Some clusters are visibly separated from each other but
there are overlapping.

Figs. 3, 4 and 5 show a visualization of a synthetically
generated data set in the shape of five hollow cylinders
with different radii. In this case, data were again gener-
ated in the 3-dimensional data space. Radii of the inner
and outer parts of the cylinders were in this case speci-
fied, differing for each data cluster. Distances between
clusters were not set. In this example, the clusters are
overlapping.
Fig. 6 provides a visualization of a synthetically gen-

erated data set in the shape of six hollow cylinders
with different radii. Data are generated in the two-
dimensional space. The distance between the sets of
points was set to five for the y axis. The radii are ran-
dom and different for each hollow cylinder. Hundred
patterns were generated for each cluster.

V. Conclusions

In this paper, we presented a tool whose task is to
generate training data sets for self-organizing artificial
neural networks. The tool allows to modify a number
of various parameters that in turn allows to generate
a different number of data classes that differ in specific
properties. Particular features may be random, but it is
also possible to predefine their values. Thanks to this,
it is possible to obtain data classes of different shapes,
different scattering of the positions of particular learn-
ing patterns around a given shape, different distances
between data classes, etc. This tool was built to sup-
port the verification of neural networks implemented in
specialized chips, at the stage of their design and selec-
tion of their parameters.
The introduced parameterization, that enables a step

change of particular features of data classes, allows for
comprehensive verification of the behavior of the ANNs.
The data sets obtained in this way can be used in
comparative tests of various learning algorithms of self-
organizing neural networks.

References
[1] T. Kohonen, Self-Organizing Maps, 3 rd edition, Berlin,

Springer, 2001.
[2] J. Lee and M. Verleysen, “Self-organizing maps with recur-

sive neighborhood adaptation,” Neural Networks, vol. 15,
no. 8-9, pp. 993–1003, 2002.

[3] R. Dlugosz, M. Kolasa, and W. Pedrycz, “Fisherman learn-
ing algorithm of the SOM realized in the CMOS technology,”
in Proc. ESANN 2011 – 18th European Symp. Artificial
Neural Networks, Computational Intelligence and Machine
Learning, Bruges, Belgium, Apr. 2011, pp. 171–176.

[4] R. Dlugosz, M. Kolasa, W. Pedrycz, and M. Szulc, “Par-
allel programmable asynchronous neighborhood mechanism
for kohonen SOM implemented in CMOS technology,” IEEE
Transactions on Neural Networks, vol. 22 (12), pp. 2091–
2104, December 2011.

[5] M. Kolasa, R. Dlugosz, W. Pedrycz, and M. Szulc, “A pro-
grammable triangular neighborhood function for a kohonen
self-organizing map implemented on chip,” Neural Networks,
vol. 25, pp. 146–160, January 2012.

[6] Roger Stafford, “Random Points in an n-Dimensional Hy-
persphere”, MATLAB Central File Exchange. 12/23/05


