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Abstract—The paper presents methods of implementing finite
impulse response (FIR) filters in hardware. Considering their
functioning, FIR filters require only simple arithmetic operations
such as multiplication, addition and shifting of signal samples
in the delay line. In the case of their implementation as a
device in which parallel processing of signals is assumed, one
of the main challenges is an efficient implementation of the
block of filter coefficients. This applies in particular to high
order, N filters and a relatively high resolution (in bits) of the
processed signals and filter coefficients. When the objective is
to reach a high filter selectivity, understood as the attenuation
in the stop band and the steepness in the transient band of
the frequency response, the filter coefficients usually also require
high resolutions. In the presented work we perform an analysis of
trade-offs between such parameters as data rate, occupied chip
area (number of transistors), simplicity of the control block as
well as energy consumption. We investigate possible approaches
to the implementation of such filters, particularly in terms of the
complexity of the block of coefficients. One of the key possibilities
is the use of at least partially asynchronous signal processing,
which has a significant impact on the complexity of the circuit
structure and data rates.

Keywords—FIR filters, Parallel Implementation, Asynchronous
operation, CMOS Realization, Low power

I. INTRODUCTION

Filtering belongs to one of the most frequent operations
performed in various software and electronics systems. Filters
may be used to process either continuous or discrete time
signals, analog or digital (quantized). Depending on the signal,
the filters may be realized in different ways [2]. The realization
approach may additionally depend on such parameters as
the cut–off frequency, the steepness of the transient band,
the attenuation in the stopband, etc. Additionally, selection
of the type of the filter and its implementation depends on
the target application. In this context it is worth to mention
such parameters as the sampling rate, immunity to noise and
external conditions (e.g. environment temperature), etc.

In the case of discrete time signals, finite impulse response
(FIR) filters are most commonly used. Their main advantages
include stability, as well as the possibility to obtain a linear

phase response. They offer a relatively simple structure, com-
posed of a delay line (delay elements usually denoted as T ),
filter coefficients (hi) and a summing circuit. The filter order
N is equal to the number of delay elements.

When an input signal x is passing the filter, its particular
samples xi are being stored in subsequent memory cells of
the delay line. The samples after the multiplication by their
corresponding filter coefficients hi are summed in the output
block. The output samples yn of the filter are calculated as
follows:

yn =

N∑
i=0

hi · xn−i. (1)

The implementation method results from various initial
premises. Investigations related to the hardware implemen-
tation of such filters may focus on simplifying their overall
structure (memory, coefficients, summing circuit) or towards
reducing the consumed energy, simplifying the structure of
the controlling clock circuit, etc. Such filters are usually
realized in digital signal processors (DSP), field programmable
gate arrays (FPGA) [1] or as components of typical software
systems. Software realizations, especially those in which float-
ing point numbers may be used, allow to reach very high
attenuations and large selectivities. These parameters depend
on the precision of the implementation of the filter coefficients.

In hardware, obtaining the parameters comparable with
those that are achievable in software floating point realizations,
mentioned above, is not easy. In digital approach, the main
problem are trade-offs between the precision in the realization
of the filter coefficients, circuit complexity, dissipated power
and data rate. The higher the required precision is, i.e. the
number of bits in particular coefficients k, the larger memory
block in delay lines, more complex multipliers and summing
blocks have to be used. These problems become noticeable in
fully parallel realizations, in which each coefficient requires
its own multiplier.
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Fig. 1. Conventional approach to the realization of the FIR filter.

In analog approach, on the other hand, various circuit non-
idealities may appear. For example, in switched capacitor (SC)
approach, parasitic capacitances of connecting lines impact
the precision of the filter coefficients, thus reducing the filter
selectivity [3]. In switched current (SI) filters, the gain of
current mirrors used in the filter coefficients leads to a similar
effect [4]. Additionally, in analog filters more effort is needed
to make such circuits immune to the impact of such factors as
transistor mismatch, environment temperature, supply voltage,
variations in process parameters, leakage, etc.

The focus of this work is transistor level implementation
of filters working in parallel [6]. We analyze the circuit
complexity and other parameters for two possible architectures
of the FIR filters. In the first one, the filter is based on the
conventional approach, in which the samples are shifted along
the delay line after each new sample is being provided to the
filter input. In this approach, the filter coefficients are stored all
the time in the same place. In the second approach, the filter
coefficients circulate in the memory block, while particular
signal samples remain in the same memory cell, until they are
overwritten by new samples.

The paper is organized as follows. The next section provides
a discussion on selected implementation issues relevant to the
realization of FIR filters in hardware, i.e. the complexity of
the controlling clock and the multiplication block, which is the
basis for the implementation of a single filter coefficient. In
the following section, the block of filter coefficients treated as
a whole is analyzed in more detail. Optimization of single co-
efficients requires that the overall filter structure, which results
from its frequency, is taken into account. The conclusions are
provided in the last section.

II. IMPLEMENTATION ISSUES IN PARALLEL FIR FILTERS

Regardless of the approach to the implementation of the
FIR filters, the necessity of shifting signal samples along the
delay line should be taken into account. It can be achieved by
rewriting a sample between memory cells in the delay line or
by changing the connections between particular memory cells
and the block of the filter coefficients. Two general cases with
variations can be considered here.

In the first approach, which we call the classic approach,
the memory is realized as a shift register, in which all samples
are rewritten between cells for each new signal sample [5]. In
this case, the filter coefficients are stored in the corresponding
memory blocks, permanently connected to particular memory
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Fig. 2. Delay line realized as a rotational memory, without rewritting signal
samples.
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Fig. 3. Rotator FIR filter with rotation switch that couples outputs of the
delay line with filter coefficients.

cells. A block diagram of such a solution is shown in Figure 1.
In this way, particular samples are multiplied by successive
filter coefficients in subsequent clock cycles, according to 1.

In the second approach, the delay line is implemented as
a rotational memory block, shown in Figure 2. In this case,
a recorded signal sample remains in a given k-bit memory
cell until it is overwritten by one of the subsequent samples
after N clock phases. An issue in this approach is the way
of implementing the block of filter coefficients and more
specifically, the way of connecting particular outputs from the
delay line with different coefficients over time. This can be
achieved in several ways. One of them is to use a rotation
switch which connects particular outputs of the delay line with
different coefficients, as shown in Figure 3. Another solution is
to permanently connect particular outputs from the delay line
with fixed memory blocks containing coefficients and then to
rotationally connect the coefficients between these blocks, as
shown in Figure 4.
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A. Complexity of the clock circuit

One of the important blocks used in filters is the control
clock circuit. Its complexity depends on the method of imple-
menting the overall filter, as briefly described above.

In the classic approach mentioned above, a simple, only 2-
phase clock generator can be used to control the overall filter.
In this case, the complexity of the clock depends largely on the
way of implementing the memory cells in the delay line and
the filter coefficients. More specifically, an issue is the way of
implementing the blocks which multiply the signal by the filter
coefficients. They can be realized either as an asynchronous
binary tree or as a shift-and-add circuit and an accumulator
(ACU). In the first variant, if the output summing circuit of
the filter is also realized as a parallel and asynchronous block,
then the clock is required only to control the delay line. In the
second case, the multiplication operations require an additional
k-bit clock generator. We discuss it later in this work.

If each delay element is equipped with two memory cells
in the classic approach, then rewriting of the samples can be
done fully in parallel and be controlled by a 2-phase clock. It
is a two-step process. In the first clock phase, all samples are
stored in temporary memory cells, freeing space for further
samples. In the second clock phase, the values stored in the
temporary cells are shifted to subsequent delay elements. Since
the rewritten samples are in practice immediately available
at the outputs of the delay line, they can be immediately
multiplied by the filter coefficients and summed at the output
of the filter in the same clock phase.

In the second approach, with rotational memory, a multi-
phase clock circuit with the number of phases equal to N+1 is
required, as shown earlier in Figure 2. The memory block with
filter coefficients has a similar structure to the one presented
in the classic approach, with the only difference being the way
the samples are fed from the delay line.

B. Filter coefficients – multiplication operation

The way of implementing the coefficients of the FIR filters
(the same problem exists in the case of infinite impulse
response IIR filters) is one of the basic problems investigated
in the literature [7]. As discussed earlier, a lot of work in this
area is aimed at optimizing the multiplication operations in
order to minimize the number of used transistors and reduce
the energy consumed by the filter. The problem becomes
relevant in filters with high orders, N , and high resolutions
(in bits) of the processed signal samples and the coefficients
themselves.

In the vast majority of digital realizations of filters, the mul-
tiplication operation is based on the shift-and-add principle,
as mentioned above. This principle, however, may be applied
in several ways. A commonly used approach is the iterative
(serial) one, which involves the ACU and the k-phase clock
generator. One of two multiplied numbers is shifted by one
bit to the left (multiplication by 2) in subsequent clock cycles.
After each operation, the resultant signal is added (or not)
to the ACU throughout a set of AND gates, depending on
the values of corresponding bits in the second number. The
ACU block is realized as the multi-bit full adder (MBFA),
composed of 1-bit full adders (1BFA), coupled by their carry
in/out terminals. The MBFA is accompanied by a memory
block, controlled by a clock.

For the purposes of the considerations presented in this
work, we treat the 1BFA and MBFA circuits as standard
blocks. Many such systems have been proposed in the lit-
erature [8], [9], [10]

In the serial approach, particular bits of the first input
number are provided to one of the inputs of corresponding
AND gates. The second inputs of all these gates are shorted
together and switched between following bits of the second
multiplied number in subsequent clock phases. The advantage
of this solution is its relatively low complexity, which increases
only moderately with the resolution of the multiplied numbers.
The cost of this feature is relatively low speed, linearly
proportional to the signal resolution.

Another approach involves the implementation of the mul-
tiplier as an asynchronous binary tree composed of MBFAs
of different lengths. Such circuits are very fast and easy to
control, as they do not require a clock block. However, they
require a large number of transistors. Their application in fully
parallel implementations of filters is in practice limited to
relatively small signal resolutions and relatively small values
of N .

To assess the complexity of both described approaches let
us consider the multiplication of two numbers, k– and l– bit,
respectively.

In the case of the serial approach only one MBFA is used.
It is able to accommodate the sum of l intermediate signals
which are computed from the initial k-bit signal by following
shifting operations. In this case the number of 1BFAs, which
is equal to the number of the used AND gates and to the
resolution of the output signal of the ACU, is given as follows:

RS
1BFA = k + l. (2)

The number of transistors used in such ACU and thus in a
single filter coefficient is expressed as follows:

RS
TR = (30 + 6 + 8) ·RS

1BFA, (3)

where factors 30, 6 and 8 refer to the number of transistors
in a single 1BFA, a single AND gate and a single 2-stage
memory cell in the ACU block, respectively.

In the parallel approach the number of 1BFAs is expressed
in a more complex was, as follows:

RP
1BFA = k · (2L − 1) + (L− 0.5) · 2L, (4)
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where L is the number of layers in the tree. Assuming that l
is one of the powers of 2 (e.g. 2, 4, 8, 16, . . . ), it is expressed
as:

L = log2 l. (5)

In the parallel approach the number of the AND gates at
the inputs of the tree is equal to:

RP
AND = l · k. (6)

Combining the formulas for the parallel approach, the total
number of transistors is expressed as follows:

RP
TR = 30 ·RP

1BFA + 6 ·RP
AND. (7)

Formula 4 may require an explanation. Figure 5 shows an
exemplary multiplication circuit based on the asynchronous
binary tree, working fully in parallel. It is shown for two
exemplary numbers A and B with resolutions of 4 and 8
bits, respectively (k = 4, l = 8). In this configuration, the
number of layers in the tree equals 3 according to formula
5. In the first layer four MBFAs are used, each consisting of
five 1BFAs. These circuits, however, provide 6-bit numbers on
their outputs. It results from the fact that the most significant
bits (MSB) of the output signals are in this case carry out
signals from most significant 1BFAs. Assuming that A and
B have maximum possible values of 15 (1111) and 255
(11111111), respectively, the output of each MBFA in the first
layer is equal to 45 (15 + 2· 15), i.e. 101101 binary.

In the second layer of the tree two 8-bit MBFAs are used.
The signal is provided with the shift of two bits to the left,
i.e. multiplied by 4. As a result, for the maximum values of A
and B the output of each 8-bit MBFAs is equal to 225 (45 +

4· 45). It is worth to notice that carry out bits are in this case
0, so they can not be used to extend the resultant number. In
the 3rd (last) layer of the tree a single MBFA is used, with
one of its inputs shifted by 4 bits to the left, i.e. multiplied
by 16. The resulting output signal is equal to 3825 (225 + 16·
225).

Increasing the resolution of the number B to 16 or 32 bits
makes it necessary to use a binary tree with 4 or 5 layers,
respectively, with one of its inputs shifted by 8 or 16 positions.
It can be shown that excluding the first layer of the tree, in
which a shorter chain of 1BFAs can be used, the lengths of
the used MBFAs in the following layers increase by 4, 8, 16,
... , in relation to the value of k.

The circuit shown in Fig. 5 can multiply either both positive
numbers (for the ‘fill’ signal equal to 0) or a positive B number
and a negative A one (for ‘fill’ = 1). The input signal x may be
shifted by a DC value to avoid negative numbers. However,
in the FIR filters the coefficients may be either positive or
negative numbers. In this situation the filter coefficients are
provided to the A input (thus k becomes the resolution of
the filter coefficient), while the signal samples to the B input.
In the two’s complement code, the MSB is the sign of the
number (‘1’ for negative) and thus can be directly used as the
fill signal.

The chip area depends on the technology. We provide an
estimate for the CMOS 130 nm technology on the basis of a
realized project. A prototype 8-bit ACU in the CMOS 130 nm
technology was implemented, as shown in Fig. 6. The circuit
was verified by means of laboratory tests. The prototype circuit
is composed of eight 1BFAs, accompanied by a memory block
realized as a chain of switches and short-term memory cells.
The cells are in turn realized as parasitic capacitances at the
gate terminals of the NOT logic gates. A single 1BFA is



Fig. 6. Accumulator used in the multiplier: (a) 1BFA, (b) 8-bit MBFA, (c) 8-
bit memory block composed of switches and memory cells realized as parasitic
capacitance of NOT gates.

composed of 30 transistors and occupies an area of 45×5 µm
(225 µm2). This value may be used in an assessment of the
overall chip area.

Fig. 7. Complexity of a single filter coefficient for serial and parallel
approach: (a) the total number of 1BFAs, (b) the total number of transistors
(approximately).

III. BLOCK OF FILTER COEFFICIENTS – TRADE OFFS IN
TRANSISTOR-LEVEL IMPLEMENTATION

Similarly to the multiplication operation, the overall block
of the filter coefficients may be implemented either as a
serial or a parallel circuit. It is also possible to propose
various mixed approaches [1], in which synchronous and
asynchronous approaches can be applied at different states
of the filtering process depending on the value of N and k.
We assessed the complexity of the filter block in different

Fig. 8. Complexity of the overall block of filter coefficients for an exemplary
case of N = 31, different resolutions of signal samples and coefficients. The
results were obtained for 32 serial multipliers working in parallel and a single
parallel and asynchronous multiplier (32 multiplications in series).

Fig. 9. Similar results as in Fig. 8. In the case of a parallel multiplier the
results are presented for different number of multiplication blocks working in
parallel.

scenarios. Selected results are shown in Figs. 8 and 9 for an
exemplary filter with 32 coefficients.

Initially, we compared two cases, as shown in Fig. 8.
The first one involves a single fully parallel (asynchronous)
multiplier. This block is switched between following samples
stored in the delay line and their corresponding coefficients.
In the second case 32 serial multipliers are used. In both cases
a similar 32-phases clock is used, however in a different way.
The data rate is similar in both cases.

Then, we additionally compared the results for multipliers
realized as parallel and asynchronous circuits and several such
blocks working in parallel (2, 4, 8, 16, 32 (fully parallel)), as
shown in Fig. 9. The results are shown as a function of the
resolution of the filter coefficients and the signal samples in
all cases.

The obtained results reveal some interesting relations. A
single parallel multiplier is more complex than a serial one,
although the ratio between the numbers of transistors strongly
depends on the signal / coefficient resolution in both cases.
The larger the resolution is, the more the ratio (parallel to
serial) increases in favor of the serial approach. However,
when comparing the complexity of the overall block of the
filter coefficients the conclusions are different. The results
shown in Fig. 8 suggest that when the moderate data rate
is acceptable, a better option is to use a single fully parallel



multiplier and multiplex it, instead of using N+1 (filter length)
serial multipliers working in parallel.

Fig. 9 shows that for a similar number of used transistors,
the filter with fully parallel and asynchronous multipliers
offer a better performance, however it depends on the signal
resolution. For smaller resolutions (8 bits) a similar circuit
complexity is obtained for a filter that is even 8 times faster
than the one with serial multipliers. For 16 bits of the
resolution a similar number of transistors is obtained for a
filter that is 4 times faster. Even for 32 bits of the resolution,
the filter with parallel coefficients can be 2 times faster than
the one with serial coefficients.

Basing on the obtained results, we make following sugges-
tions for when particular filters fit the best. Let us consider
four rough cases, as listed and described below. We consider
two parameters, such as filter order N and the resolution of
the filter coefficients in terms of the number of bits k.

Low filter order N , small resolution k

In this case the optimal approach is a full parallel one, in
which both the multipliers and the overall block of the filter
coefficients operate in parallel and asynchronously.

Low filter order N , large resolution k

Here parallel multipliers will offer higher performance
because the number of necessary clock phases will be smaller
than in the case of the filter with serial multipliers. Let us
denote this case as N < k.

Large filter order N , large resolution k

If (N + 1) = k or both parameters have similar values,
a filter with a single parallel multiplier will offer the best
performance. If N >> k several asynchronous multipliers
working in parallel can be used, with each of them being
switched between a given subset of signal samples and the
filter coefficients.

Large filter order N , small resolution k

This case may be considered as a special one, not relevant
for investigations presented in this work. Filters with larger N
are usually introduced to enlarge the selectivity of the filter.
Suppressing the resolution of the coefficients is in opposition
to that objective. In several applications (e.g. decimation filters
for Σ-∆ modulators) longer filters with equal coefficients are
used, however such filters can be realized in a much simpler
way, not involving the multiplication operations [11].

IV. CONCLUSIONS

The paper presents investigations of hardware implementa-
tion of Finite Impulse Response filters in digital specialized
integrated circuits. In particular, we focused on the imple-
mentation of the filter coefficient block. Depending on the
frequency response of the filter, this block is the main source
of typically high hardware complexity of the overall filter.

Various possibilities of implementing the block of coef-
ficients were analyzed, in which both sequential and fully
parallel and asynchronous multiplication circuits were used.
Computations were carried out for different resolutions of the
processed signals and the filter coefficients.

The conclusion is as follows: the parallel / asynchronous
approach leads to satisfactory results regarding the obtained
data rates at a given number of transistors. In the case of
a moderate filter length, comparable to the resolution of the
processed signals, fully parallel multiplication of particular
signal samples by corresponding filter coefficients requires a
larger number of transistors than in the case of a single paral-
lel multiplier switched between particular coefficient–sample
pairs. For longer filters, several asynchronous multipliers can
be used in parallel.

A next step in our investigations will be solving the issue of
reducing the number of bits at the output of the filter. This can
be achieved by the operation of shifting all bits to the right.
Bitwise shifting can be applied either directly at the output of
each multiplier or at the output of the overall filter, i.e. after
summing up all multiplication products.
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