PROC. 30th INTERNATIONAL CONFERENCE ON MICROELECTRONICS (MIEL 2017), NIS, SERBIA, OCTOBER, 9th-11th, 2017

Selected aspects and tradeofts in transistor level
implementation of genetic algorithms

Stawomir Jezewski and Rafal Diugosz,

Abstract— In this paper we focus on the issues of
hardware implementation of genetic algorithms (GA) in
hardware. In their classic implementation, the genetic
algorithms search for a global minimum or maximum of
a multidimensional function called the fitness function.
If the problem, i.e. the fitness function, is too complex
for a brute force search, we can look for a solution based
on GA. In this situation we obtain desired results by
performing parallel calculations on the “generation” of
candidate solutions randomly distributed over the input
data space. For these candidates we evaluate the fitness
function and then we breed a next generation. Dur-
ing breeding we use operators that mimic chromosomal
crossing to exchange of features between the candidates,
and mutation operations to introduce new features into
the population. The literature research shows that more
than sixty different crossing algorithms are used with the
GA in different purposes. Such a large number of cross-
ing algorithms is a serious problem when developing a
hardware solution. In this paper, we are reviewing a
deployment of selected crossing operators in specialized
hardware.

I. INTRODUCTION

Genetic algorithms (GA) as a mathematical concept
were born in the 1960s in the works of J. Holland [1].
At the turn of the seventies and eighties, it is noticed
the first significant increase in their popularity, when
classic papers of De Jong [2], Goldberg [3] and Davis
[4] were published. These works caused the canonical
rise of the genetic algorithms and have identified the
potential scope of application of them. Since then GAs
have enjoyed uninterrupted, constant interest.

The scientific world is systematically informed about
effective applications of GAs in various optimization
tasks both in science and in technology. The sec-
ond stream of publication presents alternations of well-
known algorithms invented on the base of a particular
real word problem. As of today, we know more than
sixty crossing algorithms for binary data and eighty for
data encoded with real numbers [5]. Similarly, we can
enumerate twenty seven binary mutation algorithms
and forty seven for real numbers [5]. These lists are
not exhaustive. There is a large amount of publications
on the attempts to implement GAs in the form of the

S. Jezewski is with the Institute of Informatics, College of Social
and Media Culture, ul Sw Jézefa 23/35, 87-100 Toruri, Poland,
E-mail: slawomir.jezewski@Qwsksim.edu.pl

R. Dtugosz is with the UTP University of Science and Technol-
ogy, Faculty of Telecommunication, Computer Science and Elec-
trical Engineering, ul. Kaliskiego 7, 85-796, Bydgoszcz, Poland,
and with Delphi Poland, ul. Podgérki Tynieckie 2, 30-399,
Krakéw, Poland, E-mail: rafal.dlugosz@gmail.com

978-1-5386-2562-0/17/$31.00 ©2017 IEEE

field programmable gate arrays (FPGAs) [6], [7], [8],
[14], [13], [12], as well as in graphics processing unit
(GPU) [11], [15]. These examples are related to the
industrial use of the GAs, for example, in automotive
technologies and in Artificial Intelligence in general.

A typical GA is based on the calculation scheme
shown below:

Data: n dimensional space [R, C, I]™ defined as K",
fitness function F™ € K™, population P: set of
points X € K"

Result: sample with highest value of fitness function

/* generate start population x/
for X" C P do

XY < random(K™)/* random coordinates */
end

/* search fitness space x/
repeat

R < F(P) /* evaluate fitness function */
S < Select(R, P) /* Select samples */

Sy < CrosoverOperator(S) /* perform crossover
*/

P < MutationOperator(Sy) /* perform mutation
*/

until is_optimal(P);

Algorithm 1: Genetic algorithm calculation scheme

where [R, C,I]™, denotes an n-dimensional space with
real, integer or binary coordinates.

In these algorithms, the following blocks play the
key role: the fitness function, the candidate selection,
the mutation and the crossing functions. The first two
functions are run for each population element (sample),
while the remaining functions are run for selected ones.
The crossing operator is run on a pair of samples or
more with a probability of close to unity (0.8 —0.9) and
either exchanges a subset of features between samples
or determines the arithmetic mean for continuous fea-
tures. In contrast, the mutation operator is run with
little probability of values not exceeding 0.05 and intro-
duces random changes to selected features. When im-
plementing such algorithms, the researcher selects the
fitness function, the appropriate crossing algorithm, de-
termines the probability of crossing, then selects the
mutation algorithm and their probability. The exe-
cution time of this algorithm depends on the number
of samples in the population, the number of the fea-

235

ADDR DATA
Random Random
rnd
64
Parent Parent
RAM READ MODULE
Rla?dom Random -
nteger
A Crossover Module I s I 9 Float
32 32
16 32
32
Bit CLK {=—0 ait CLK [=—0 val<D.1>
Stream Float Stream Float
Deserializer Deserializer
32
1 1
RND ‘ ‘
Parent Parent Parent Parent RND Parent Parent RND
CLK (O—=f CLK bl switch A B GT =0 A B GT =0 A 8 GT 0O
ChildC Chidp CLK [=—O Child € CLK [=—0O Child € CLK =—O
ACT Gene
ication - Binary Crossover Integer crossover
Randomisation v | e | Float Crossover
Module * ‘
c3 e GT |=—0
O—={CLK Child C || child D CLK [=—0O ChildC_CLK [-=—O
Deserializer | Deserializer Multiplexer
Addr Addr
GBL
O—wfClK GBL C") Data Data
-
ChildD | childc GT RDWR RDWR
ACT ACT
32 32 Gene Gene
Gene Set- Chromosome
! . Tracker Canfiguration
Random Child D ChildC
[
Child D Child C
Mutation Module
Child D Child €
Child D Child C
Fitness Function
Evaluation
Child D Child C
Addr Data
Bus Bus

Fig. 1.

tures (the size of the data space, n) and the complexity
of selected functions. Because increasing the number
of samples positively affects the probability of detect-
ing the global minimum / maximum, the algorithm are
usually started with large files. The above statements
introduce the main requirements for the structure to be
designed, i.e. how to choose the crossing and the muta-
tion algorithms, and how to develop the structure with
massive parallel computation abilities.

II. IMPLEMENTATION SPECIFIC REQUIREMENTS FOR
GENETIC ALGORITHMS

The promising area for the use of genetic algorithms
is in searching for a motion path of the mobile robot
[16], [17], [19], [18], [20]. A similar problem, however

RAM Write Module

Functional Block Diagram of Crossover Algorithm

much more challenging, will exist in case of autonomous
driving. The planning algorithm is expected to operate
in real time, to have 3D navigation capabilities, bypass-
ing mobile and stationary obstacles and optimizing the
energy consumed by the system. In this case searching
for a path is a NP-complete problem, which further ad-
ditional non-geometric constrains, so the computation
time increases quickly with the number of nodes.

To timely obtain optimal solutions an efficient imple-
mentation of the operators i.e crossing and mutation
function is a must. For this reason in this paper we
focus on it. The structure of the operator functions
strongly depends on the real problem being solved by
the GA. In software the operator function may be flex-
ibly modeled in any way. In hardware the situation is

236

more challenging, as the structure of the function can-
not be changed. For this reason it is necessary to look
for programmable solutions on one hand, and simple on
another. There is a trade-off between these criteria.

III. PROPOSED IMPLEMENTATION OF THE CROSSING
ALGORITHM IN FPGA

Successful implementation of GE algorithm in hard-
ware (ASIC - application specific integrated circuit or
FPGA) should present at least following features:

o Population size should be programmable, scaled up
to > 10% samples,

o Parent and child population should be stored in ex-
ternal memory SRAM/DRAM to avoid limitations,

o Chromosome composition should be configurable, e.g.
number of binary, integer, and floating point genes,

o Crossover algorithms should be selectable via config-
uration registers, separately for binary and integer and
floating point modules,

o Crossover algorithm should be as paralleled as possi-
ble to obtain full speed of hardware.

These constrains lead us to an idea of a stream based
crossover algorithm, which is configured via a set of
registers.

The algorithm Data Flow (shown in Fig. 1) starts
with the Data Read Module (DRM) responsible for se-
lecting parents and reading them from the DRAM/S-
RAM memory. Then parents’ chromosomes are feed
into the two gene de-serializers, which are entry to
crossover module. The bit stream is feed into binary
crossover sub-module, the 32 bit variables go into an
integer or float crossing sub-modules depending of the
type. Each of the sub-modules is enabled by Gene Type
signal. The binary crossover sub-module accepts parent
chromosomes as a bit stream and inverts A—C , B—D
data streams according to the “switch” signal which is
generated by the randomization (RM) module.

Floating and integer point crossover modules at the
moment support three kind of crossing algorithms cho-
sen by the configuration register, respectively:

o=24t5 (1
2
Ci=ad; +(1—-a)B;, (2)

They are at the moment the most expensive part of
design in terms of LUT’s and CLB’ slices. Data pro-
duced by crossing sub-modules are feed into the mul-
tiplexer and then to the Mutation module and subse-
quently to Data Write Module (DWM).

Inherent part of the design is a chromosome configu-
ration. It is formed by a four 32-bit registers (Fig. 2).
Each register defines 4 gene blocks (geneset) contain-
ing up to 2° genes each. The lower 6 bits contains the

Current Gene -

Block CLK
I

CLK
@ CE Actual
] Gene
£ ADDR sz
g Gene CLK GT j Gene Type
£ DATA Block Gene)
Q DATA DATA Block |20 ¢, Gene Block

RDMWR Len Len
432 bit Register File 8 bit Register

Fig. 2. Functional Diagram of the Chromosome Configuration
Block

number of genes, while the upper two contain the gene
type.

Supported geneset types are binary genes (00), in-
teger genes (01), floating genes (10), terminator gene
(11). The termination gene informs module that chro-
mosome evaluation is finished and the next pair of par-
ents should be selected for processing.

In addition to the main data flow there is a Gene Set
Tracker module consisting of three counters and gener-
ating to the rest of the system: the number of current
gene (CG), the current gene set (CGS) and its type
(GT). The GST module is shown in Fig. 1 It receives
input from the main clock and chromosome configura-
tion registers. The GST, Serializers and Deserializers,
as well as the Gene Configuration are the backbone of
the crossing algorithm and at the same time they are
the part of the design that is independent of the selected
crossing algorithm either binary or floating point. It is
one of the advantage of our proposed solution. A flex-
ibility of the the design is also a plus. We are able to
solve problems with up to 2'° — 1 genes of mixed types
with chromosome length up to 2'2 bytes, which is no
limitation in practical problems. A practical limitation
lies elsewhere. Our design can handle only bi-parent
crossing algorithms. This is a well-thought-out choice,
because the speed optimization of the multi-parent core
has other key parameters.

IV. RANDOMIZATION MODULE

A variety of binary crossing algorithms is hidden
mainly in the Randomization Module. This module
is responsible for creating a switching signal for the
Binary Crossover Module (BCM) and cross signal for
the Integer/Floating Crossover Module (ICM / FCM)
(See Fig. 1). In practice, RM is responsible for drawing
k random numbers that form the intersection points
in the chromosome, where the k& parameter is depen-
dent on the type of the crossing algorithm. In our im-
plementation this parameter it being set through the
configuration registers. The RM block also generates a
1-bit random number that is needed in the BCM, ICM
and FCM sub-modules. This 1-bit random variable is
a hardware realization of statement 4 encountered in
numerous crossover algorithms [5].

237

TABLE 1
RESOURCE USAGE FROM THE SIMULATION /SYNTHESIS TOOL

Resource type | Used | Fixed | Available
Slice LUTs | 2560 0 41000
LUT as Logic | 744 0 41000
LUT as Memory 66 0 13400
Slice Registers | 1808 0 82000
if(a>0.5) (4)

A random 16-bit variable stored in the shift register
can be treated as a source of random bits. As long as
the bits state 1’ has probability equal to 0.5, it is an
equivalent of the equation (4). Three random bits with
integer comparison is a sufficient approximation of any
« > [comparison, where [has two significant digits.

V. CONCLUSIONS

In this paper, we proposed a functional concept of
a hardware module that implements the genetic algo-
rithm of bi-parent genetic crossing. The module con-
struction is based on a configurable chromosome struc-
ture that can handle binary, integer and float genes si-
multaneously. The large number of genes in the 2'°
chromosome causes the available RAM to be the only
practical limitation. The presented module can work
with populations of arbitrary/configurable sizes up to
millions of samples. The module is optimized for speed.
The investigations show that for problems encoded with
binary genes, the algorithm achieves the highest cross-
ing rate of 1 gene per clock tick. For floating point cal-
culations, the rate is slower and results from the time of
floating point multiplication. In case where FCM calcu-
lations limit the throughput of the solution is necessary
to instantiate two or more CM modules in parallel.

Our design follows requirements presented in section
III, which is cornerstone of the hardware implementa-
tion. The structure, in which the RM block is distinct
from BCM and FCM, greatly simplifies solution and
further development. With the structure we support
most of algorithms described in [5] including: 1-point
Crossover Algorithm k-point CA, Shuffle CA, Reduced
Surogate CA, Uniform CA, Discrete Crossover CA, Flat
CA. Some statistics concerning our design are shown in
Table I. The presented FPGA implementation is a pro-
totype of a target ASIC realization.

REFERENCES

(1] J.H. Holland “Outline for bilogical theory of adaptive sys-
tems”, Jurnal of the ACM, vol. 3, no. 3, 1963, pp. 297-314

[2] K.A.De Jong “An analysis of the behaviour of a class of ge-
netic adaptation systemsOutline for bilogical theory of adap-
tive systems”, doctoral dissertation University of Michigan ,
1975

[3] D.E Goldberg “Genetic algorithms in search, optimisation,
and machine learning”, Addison Wesley, Reading, 1989

[5]
[6]

7]

(8]

[9)

[11]

[12]

[13]

[14]

[15]

[16]

[19]

[20]

238

L.Davis (ed) “Handbook of Genetic Algorithms”, Van Nos-
trand Reinhold, New York

T.D. Gwiazda “Algorytmy Genetyczne kompendium?”,
Wydawnictwo Naukowe PWN, Warszawa 2007

M.S Ben Ameur, A. Sakly, A. Mtibaa, , “Implementation of
Genetic Algorithms Using FPGA Technology”, Proceedings
of the Annual FPGA Conference (FPGAworld’12), vol. 71,
issue. 1-3, pp. 3:1-3:9, Dec. 2012.

N .Nedjahadia L. de Macedo Mourelle, “An efficient
problem-independent hardware implementation of genetic
algorithms”, Neurocomputing, vol. 71, issue. 1-3, pp. 88-94,
Dec. 2007.

W. Tang, L. Yip, “Hardware Implementation of Genetic Al-
gorithms Using FPGA”, 47th IEEE International Midwest
Symposium on Circuits and Systems (MWSCAS’04), Ger-
many, 2004, Volume I

Levy, Erez and David, Omid E. and Netanyahu, Nathan S.
“Genetic algorithms and deep learning for automatic painter
classification”, Proceedings of the 2014 Annual Conference
on Genetic and Evolutionary Computation (GECCO’14),
VAncouver BC Canada, 2014, pp.1143-1150,

Franco, Maria A. and Krasnogor, Natalio and Bacardit,
Jaume “Speeding Up the Evaluation of Evolutionary Learn-
ing Systems Using GPGPUs”, Proceedings of the 12th An-
nual Conference on Genetic and Evolutionary Computation
(GECCO’10), Portland, Oregon, USA, 2010, pp.1039-1046,
Rojas-Galeano, Sergio and Rodriguez, Nestor “A Memory
Efficient and Continuous-valued Compact EDA for Large
Scale Problems”, Proceedings of the 1/th Annual Conference
on Genetic and Evolutionary Computation (GECCO’12),
Philadelphia, Pennsylvania, USA, 2012, pp.281-288,
Kromer, Pavel and Platos, Jan “Genetic Algorithm for Sam-
pling from Scale-free Data and Networks”, Proceedings of
the 2014 Annual Conference on Genetic and Evolutionary
Computation (GECCO’14), Vancouver, BC, Canada, 2014,
pp-793-800,

Vernekar, D. B. Vernekar, G. Malhotra, V. Colaco, “Recon-
figurable FPGA Using Genetic Algorithm”, Proceedings of
the International Conference and Workshop on Emerging
Trends in Technology (ICWET’10), Mumbai, Maharashtra,
India, 2010, pp.493-497,

L. Guo, A. I. Funie, D. B. Thomas, H. Fu, W. Luk “Par-
allel Genetic Algorithms on Multiple FPGAs”, SIGARCH
Comput. Archit. News (HEART’15), Mumbai, Maharash-
tra, India, vol 43, Issue 4, Sept. 2016, pp.86-93,

Ma, Yunfeng and Indrusiak, Leandro Soares, “Hardware-
Accelerated Parallel Genetic Algorithm for Fitness Func-
tions with Variable Execution Times”, Proceedings of the
Genetic and FEvolutionary Computation Conference 2016
(GECCO’16), Denver, Colorado, USA, 2016, pp.829-836,
Sung Gil Park ,Shingo Mabu, Kotaro Hirasawa “Robust Ge-
netic Network Programming using SARSA Learning for au-
tonomous robots”, ICROS-SICE International Joint Con-
ference 2009 (ICCAS-SICE’09), Fukuoka, JAPAN, 2009,
pp-523-527,

H. Katagiri and K. Hirasama and J. Hu “Genetic network
programming - application to intelligent agents”, Systems,
Man, and Cybernetics, 2000 IEEE International Conference
on (ICSMC’09), vol 5, 2000, pp.3829-3834,

M. A. Bauda and C. Bazot and S. Larnier “Real-time ground
marking analysis for safe trajectories of autonomous mobile
robots”, 2017 IEEE International Workshop of Electron-
ics, Control, Measurement, Signals and their Application
to Mechatronics (ECMSM’17), 2017, pp.1-6,

T. C. E. Cheng and C. T. Ng and E. Levner and B.
Kriheli “A Fast Algorithm for Detecting Hidden Objects
by Smart Mobile Robots”, 2017 IEEE International Con-
ference on Smart Computing (SMARTCOMP) (SMART-
COMP’17), Hong Kong, China, 2017, pp.1-6,

T. R. Schéifle and S. Mohamed and N. Uchiyama and O.
Sawodny “Coverage path planning for mobile robots using
genetic algorithm with energy optimization”, 2016 Interna-
tional Electronics Symposium (IES) (IES’16), 2016, pp.99-
104,

