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Abstract—The paper presents a programmable analog current-
mode circuit used to calculate the distance between two vectors
of currents, following two distance measures. The Euclidean (L2)
distance is commonly used. However, in many situations it can be
replaced with the Manhattan (L1) one, which is computationally
less intensive whose realization comes with less power dissipation
and lower hardware complexity. The presented circuit can easily
be reprogrammed to operate with one of these distances. The
circuit is one of the components of an analog Winner Takes All
neural network (NN) implemented in the CMOS (complementary
metal oxide semiconductor) 0.18 µm technology. The learning
process of the realized NN has been successfully verified by the
laboratory tests of the fabricated chip. The proposed distance
calculation circuit (DCC) features a simple structure, which
makes it suitable for networks with a relatively large number
of neurons realized in hardware and operating in parallel. For
example, the network with three inputs occupies a relatively small
area of 3900 µm2. When operating in the L2 mode, the circuit
dissipates 85 µW of power from the 1.5 V voltage supply, at
maximum data rate of 10 MHz. In the L1 mode, an average
dissipated power is reduced to 55 µW from 1.2 V voltage supply,
while data rate is 12 MHz in this case. The given data rates are
provided for the worst case scenario, where input currents differ
by 1-2 % only. In this case the settling time of the comparators
used in the DCC is quite long. However, that kind of situation
is very rare in the overall learning process.

Keywords—Distance calculation circuit, Euclidean and Man-
hattan distance, parallel data processing, CMOS implementation,
asynchronous circuits, self-organizing neural networks

I. INTRODUCTION

D ISTANCE calculation circuits (DCCs) computing dis-
tances vectors of signals are used in numerous appli-

cations, mostly in pattern recognition and signal analysis
[1], [2], [3], [4], [5], [6], [7] but also in artificial neural
networks (ANNs) [8]. As ANNs, so far, have only rarely been
implemented in hardware, the majority of the reported DCCs
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were optimized for the applications of the first type. In general,
when viewing the circuit from the formal point of view, in
both cases the DCC performs a similar task. However, there
are also certain differences which make the structure as well as
the development process of such circuits substantially different
in particular cases.

In this paper, we present a novel programmable DCC
designed for the application in low power, low chip area,
self-organizing neural networks (NNs) realized as application
specific integrated circuits (ASICs) in the CMOS technology
[9], [10], [11]. The proposed DCC has been used in a
prototype analog Winner Takes All (WTA) NN realized in
the TSMC (Taiwan Semiconductor Manufacturing Company)
CMOS 0.18 µm technology, but this circuit can also be used
in self-organizing NNs trained with other algorithms. The
realized WTA NN comprises also the following modules: a
winner selection circuit (WSC) that determines which of the
neurons becomes the winner for a given learning pattern X ,
a conscience mechanism that is used to eliminate or at least
to reduce the problem of the, so called, dead neurons [9] and
an adaptation mechanism (ADM) that is used to adjust the
weights of the neurons, serving also as an analog memory
for the calculated weights [10]. The NN is also equipped
with some initialization mechanism that enables an initial
polarization of the weights of the neurons.

In this study, we are motivated by the possibility of us-
ing such NNs in practical applications in various areas of
engineering that embrace image processing [12], control and
robotics [13], [14], electrical engineering [15] and health care
systems [16]. All such applications require modifications and
an optimization of existing learning algorithms to facilitate
their hardware implementation [12], [17]. In such applications
larger learning systems combining various learning techniques
are often required that include semi-supervised and deep
learning [18], [19].

ANNs realized as ASIC can be used in portable low power
devices, for example, as components of nodes in Wireless
Body Area Networks (WBANs) used in medical diagnostics. A
demand for such systems is high [16], [20], [21]. Throughout
a constant process of monitoring patients, the systems of
this type would prove beneficial in numerous examples of
health issues, including heart attacks or strokes, Alzheimer
disease, Parkinson disease, prevention of sudden infant death
syndrome, and others [16], [22], [23]. The currently used
WBAN systems involve relatively simple sensors that usually
perform only basic tasks, such as a collection of biomed-
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ical data, analog-to-digital conversion (ADC), simple data
preprocessing and conditioning (filtering) [24], [25], [26].
Finally, the collected data throughout the radio frequency (RF)
communication block are being transmitted to a base station
for a further processing and analysis [27]. One of the main
problems encountered in such systems today is a substantial
loss of energy (even up to 95 % of a total energy) during the
RF transmission of data that significantly reduces the battery
lifespan [28]. This is one of the barriers in the development
of truly wearable medical systems that would be convenient
for patients. The application of ANNs in such systems can
bring about a real breakthrough. In the literature, one can find
numerous examples of employing ANNs, realized in software,
in the analysis of various biomedical signals e.g., Electro-
cardiographic (ECG) signals [29], [30], [31]. However, in
WBANs, in which low power dissipation and low chip area of
the wireless nodes are paramount features, ANNs implemented
on standard programmable devices are not particularly useful.

In our former investigations we carried out a comparison
of self-organizing maps (SOM) implemented as ASICs with
similar systems realized with the use of Field Programmable
Gate Arrays (FPGAs) [32]. These studies showed, that ASIC
realizations can offer even two orders of magnitude better
performance in terms of the Figure-of-Merit (FOM) defined
as attainable data rate over dissipated power. This is due
to the possibility of a very good match of the architecture
of the circuit and the number of the transistors used to
the function performed by the circuit. In this context, the
development of small and ultra-low power ANNs can be a
major step forward towards the realization of “intelligent” and
thus more autonomous sensors that will be able to realize data
analysis and classification of biomedical data. Such sensors
contact a base station only in urgent situations, which, in turn,
reduces the amount of energy consumed during the RF data
transmission.

The paper is structured as follows: the next section presents
a state-of-the-art background necessary to put the proposed
circuit in a proper perspective. Since the overall WTA NN
has been realized as the analog circuit, our interest was in
analog DCCs [33]. However, to make this study exhaustive,
we present also some comparative digital circuits that can
be potentially interesting for fully digital implementations
of NNs. While presenting the state-of-the-art study, it was
appropriate to distinguish DCCs considered as separate blocks
as well as larger systems – data classifiers – that use DCCs
as one of the components.

In Section III, we present the design process of the proposed
circuit. First, we offer a brief overview of other components
used in the realized WTA NN. This is important, as the DCC
contains the components whose role is to enable an interaction
with other blocks of the NN. Next, an underlying idea of the
circuit is described. In the sequel, we discuss the negative
aspects that need to be taken into account when designing
such circuits. Finally, we present the CMOS implementation
of the DCC.

In Section IV we report on an experimental assessment of
the realized circuit. Both transistor level simulation results
and the laboratory measurements of the fabricated circuit

are presented. In Section V, we discuss the obtained results
with the emphasis on the accuracy of the realized circuit and
the comparison of the parameters with other state-of-the-art
solutions. Finally, the conclusions are drawn in Section VI.

II. STATE-OF-THE-ART BACKGROUND

The state-of-the-art overview has been arranged into two
parts. First, we focus on simpler circuits that are counterparts
to the proposed DCC considered as a separate functional
module. The reported circuits often offer different features
and functions that impact the complexity, parameters and
performance of the circuit. This means that direct comparison
is not that straightforward. For this reason, in the second part
of the presentation, we provide an overview of larger systems
– data classifiers – that use DCCs as one of their components.
To facilitate this comparison, we consider classifiers that use
blocks with functionality similar to that of the WTA NN
discussed here. However, as the reported classifiers do not
offer the adaptation function, therefore to facilitate a direct
comparison we additionally estimate parameters of our system,
as if it does not have the adaptation block.

A. Analog vs. digital approach

One of the important issues is whether the circuit should
be realized using digital, analog or a mixed approach. The
answer will depend on the application for which the system
is being designed. In larger systems with predominance of
digital blocks, in which the NN would be one of the stages
in the overall signal processing chain, it is more convenient
to use digital NNs. In this case, digital NNs can process
directly signals provided by other blocks, without the use of
intermediate digital-to-analog conversion.

On the other hand, the advantage of the analog approach is
visible when the NN directly processes analog input signals. In
self-organizing NNs weights of particular neurons are hidden
signals, not directly used in further data analysis. Usually the
only signals seen at the outputs of the NN are 1-bit signals,
one per neuron, that bear the information that a given neuron
becomes the winner for a given input pattern X . In analog
NNs all these signals can be calculated without the necessity
of using analog-to-digital converters (ADCs) at the inputs of
the NN. As a result, the overall system can occupy smaller
area and dissipate relatively less power. In digital NNs, on
the other hand, all calculations are performed on multi-bit
signals, whose processing requires more complex circuits. For
example, the summation and subtraction operations in analog
current-mode circuits are performed in a junction, while in
digital approach they require multi-bit adders and subtractors.
Nevertheless, analog DCCs can be influenced by various
negative physical phenomena, discussed in Section III-C, and
therefore they need a careful design and optimization. All this
shows that there are various trade-offs that have to be taken
into account while selecting one of the described techniques.

B. Comparison of DCCs viewed as separate blocks

In literature, one can find both the voltage mode (V-Mode)
[7], [8], [34] and the current mode (I-mode) analog DCCs
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[1], [2], [3], [4], [5], [6], [35]. Circuits that work in the I-
mode offer simpler structure, while the achieved precision is
usually comparable. One of the main advantages of the I-
mode approach is that it facilitates the summation (SUM) and
subtraction (SUB) operations of the signals. These operations,
fundamental in DCC, are in the I-mode performed simply in
junction. For this reason DCCs operating fully in the V-mode
are not common, as the SUM and SUB operations are more
complex in this case and require capacitors and active elements
[36]. One of the possibilities is the mixed mode that enables
working with the input voltage signals, while the SUM/SUB
operations are realized in the I-mode [34]. The calculated
signal can be then converted back to the voltage signal [1]. In
[2], [6], [8], on the other hand, the input signals are voltages,
while the output signal is current.

Although many DCCs have been reported in the literature,
they do not offer sufficient functionality to make them suitable
for the application in ANNs. For this reason, we proposed a
new analog DCC, also working in the I-mode, that delivers
several additional functions that are not required and thus
not available in circuits used in pattern recognition. On the
other hand, some blocks which are important only in pattern
recognition applications have been omitted in our circuit. The
only circuit that is a direct counterpart of the proposed DCC
is the circuit reported in [8].

The DCCs that are used in pattern recognition usually aim
to calculate with high degree of precision the real distance
between two patterns, which is the final outcome in this case.
The real distance is the distance calculated in accordance
with the Euclidean (L2) measure that requires both squaring
and rooting blocks [1], [4], [6]. In case of DCCs used in
ANNs, on the other hand, the calculation of exact values of
the distances between a given input pattern X and weight
vectors W of particular neurons is less important than a precise
determination of the neuron that is located the closest to
this pattern. As discussed further in the paper, this allows
omitting the rooting block and in many cases also the squaring
circuits. Moreover, as in the NN realized by us the DCC
cooperates closely with the adaptation mechanism (ADM), it
has to provide some additional signals used in the ADM block
[10]. Such functions are not required in circuits used in the
pattern recognition.

The proposed DCC offers an additional feature, which is not
common in other solutions of this type. The circuit can easily
be programmed (using 1 bit only) to operate with two different
distances, i.e. the Euclidean (L2) and the Manhattan (L1) one.
For the comparison, the circuit proposed in [8], also designed
for the applications in ANN, enables calculation of these two
distances but is not reconfigurable. In this solution a given
distance has to be determined during the circuit design through
proper sizing of selected transistors. However, the ability to
operate with both these measures in a single chip is a useful
feature. System level simulations we have carried out for a
model of a self-organized NN show that using simpler (L1)
measure does not distort the learning process. This is discussed
in more detail in Section III-B.

One of the components of the proposed DCC, the absolute
(ABS) function block, can be classified as a I-mode rectifier

which, in this case, is based on a I-mode comparator and a
simple switching network. Many circuits of this type have been
reported over the past years [37], [38]. We have proposed our
own solution, as the existing rectifiers are not of much use in
the realized WTA NN. A typical rectifier calculates a rectified
value of a single input signal. In contrast, in the proposed
solution the circuit calculates a rectified value of a difference
between two signals. Additionally, the comparator used in this
case provides information which of these signals is greater.
This 1-bit signal that controls selected switches in the ADM
block allows to simplify the structure of this block [10].

In 2012 Fernandez et al. in [35] reported a field pro-
grammable analog array (FPAA) that contains an Euclidean
distance operator as well as an I-mode multiplier that can be
compared with particular components of our DCC. This circuit
performs the operations Iout =

√
I2X + I2Y that are insufficient

in self organizing NNs. To compare, our circuit additionally
calculates the absolute value of an xi − wli term, in which
xi is an ith input signal, while wli is an ith weight of an lth

neuron in the NN. It also determines which of the x and the
w signals is greater that is signalized by a 1-bit digital signal
that is used to control the adaptation block. It also calculates
the η · |xi−wli| term that is directly used by the ADM block
to adjust the weights of the winning neuron (η is the learning
rate). The Euclidean operator proposed in [35], for two input
signals, consumes the power (static power without the input
signals) of 733 µW, while the one-quadrant current-mode
multiplier the power of 275 µW for the measured bandwidth of
20 MSamples/s. For the comparison, our DCC for three input
signals consumes the power of 85 µW, including the power
consumed by the squarer, at data rate of 10 MSamples/s.

To facilitate a comparison between particular DCC solu-
tions, a Figure-of-Merit (FOM) can be defined as data rate
(fS [MHz]) over power dissipation (P [mW]) in relation to
the number of the calculation channels (NC):

FOM1 =
NC · fS
P

(1)

The comparison of particular solutions, based on Eq. 1 is
provided in Table I.

C. Comparison of data classifiers based on WTA structure

A fully digital circuit, such as our NN, designed in the
0.18 µm process is reported in [39]. This circuit is a complex
system, able to calculate either the Hamming or the Manhattan
distance (a counterpart to our DCC) between a given input
pattern and thirty two words. The words, which are the 64-
bit signals, are counterparts to neuron weight vectors in our
WTA NN. The circuit described in [39] determines which of
these words is the most similar to a given input pattern. This
operation is performed in a block that is a counterpart to our
WSC. In the Manhattan mode (L1-mode), each 64-bits input
signal is divided into nine components, which are equivalent
signal to the input xi signals in our WTA NN. Particular
components are in this case 7-bits signals, encoded in the
thermometer code, i.e. 3-bits in the binary code. If the circuit
described in [39] operates in the L1-mode, it can be viewed
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as a digital WTA NN (or classifier) with 32 neurons, without
the adaptation block. For the comparison, our proposed circuit
allows for the adaptation of the neuron weights.

A disadvantage of this solution results from the calculations
performed with data encoded in the thermometer code that
substantially limits the calculation precision. In case if the 64-
bits words would be divided into two signals, data resolution
would be limited to 5 bits only (32 bits in the thermometer
code). The overall system reported in [39] dissipates 51.3 mW,
at data rate of 6.3 MHz. For the comparison, our WTA NN
together with the adaptation module and the conscience mech-
anism, for 12 calculation channels (3 inputs and 4 neurons),
dissipates power of 700 µW at data rate of 2 MHz. In our
solution the speed is strongly reduced due to the adaptation
phase that is not present in the circuit reported in [39]. Without
the ADM block and the conscience mechanism data rate of our
circuit exceeds 7 MHz. If our WTA NN would be extended
to 32 neurons and 9 inputs (288 channels) with effective
resolution of 8 bits, it would dissipate power of 17 mW with
the ADM block and about 4 mW without this component.

To enable a quantitative comparison between particular
classifiers, let us define Figure-of-Merit (FOM) as data rate
over the power dissipation normalized to one pattern (or one
neuron):

FOM2 =
NU · fS
P

(2)

where NU is the number of units i.e. the number of neurons
in the WTA NN or the number of words in other classifiers
used in pattern recognition.

In case of data classifiers, we can use also the FOM1

measure. Both these measures tell us something different about
the circuit. To explain this in more detail, let us consider two
example classifiers: one with two neurons and hundred inputs
and the second one with hundred neurons and two inputs.
The number of the calculation channels is the same in both
cases, but the winner selection circuit becomes much more
complex in the second case, as it has to select the minimum
signal among hundred signals. In case of the first classifier, the
FOM1 provides more objective results, while in the second
classifier the FOM2 is more suitable.

In case of our circuit considered without the adaptation
block, the FOM2 for one neuron equals 40.87 [1/nJ]. For
the comparison, the FOM2 in case of the circuit reported
in [39] equals 3.9 [1/nJ]. The silicon area of our NN for
12 calculation channels equals 0.07 mm2. For 288 channels
considered without the CONS mechanism, the ADM blocks
and thus without most of the components of the DCC block,
the chip area would equal 0.40 mm2, which is about 27 %
less than in case of the circuit reported in [39] (0.55 mm2).

An interesting fully digital DCC realized in the 65 nm
process, operating in the L1-mode, has been recently reported
in [40]. The circuit calculates distances between an input
pattern composed of 16 entries, each of them being an 8
or 16-bits signal, and 128 counterpart words. This circuit
offers a similar functionality (DCC and WSC blocks) as the
circuit proposed in [39], but enables processing signals with
much larger resolutions, which is an advantage. One of the

components of this circuit is the Manhattan DCC, whose
output signal (for the signal resolution of 8 bits) can vary
in-between 0 (for an exact match between two patterns) and
16·256 = 4096 in the worst case, i.e. is represented on 12 bits.
The main component of the WSC block used in [40] (denoted
as WTA) is a time divider, which is a kind of a counter.
In the worst case scenario it requires 4096 clock cycles (at
220 MHz clock) to determine the winning signal. In this case
the quantization time would equal 18.6 µs (53 kpatterns/s).
Such a scenario is rather seldom, while an average reported
quantization time equals 0.796 µs (1.25 Mpatterns/s). The
circuit dissipates 3.56 mW of power for 128 · 16 = 2048
calculation channels. For the comparison, if our WTA NN
would be redesigned to such number of channels, it would
dissipate power of 28 mW at data rate of 7 Mpatterns/s
(without the ADM mechanism). The FOM2 in the circuit
described in [40] equals 1.9 [1/nJ] and 44.96 [1/nJ], for the
worst case and the average case scenarios, respectively.

A substantial difference between the worst and the average
cases raises the question about how to set up the input pattern/s
rate. The issue will mostly depend on the application. In
our WTA NN we always consider the worst case scenario,
especially at the beginning of the learning process, when
distances between particular patterns X and neuron weight’s
vectors W are large.

Another fully digital circuit, designed in the CMOS 0.18 µm
technology which, to some extent, is comparable to our
solution has been reported in [41]. An exact comparison is
not possible, as this circuit is based on the calculation of the
Hamming distance that requires a different approach. It allows
to calculate in parallel distances between a given input pattern
and 64 reference words (256 bits signals). At voltage supply
of 1.8 V the circuit consumes power of 34 mW, for the search
time equal to 255 ns (fS ≈ 4 MHz). The FOM calculated
using Eq. 2 equals in this case 7.53 [1/nJ].

III. THE PROPOSED PROGRAMMABLE DCC

The proposed circuit closely cooperates with other blocks
in the realized WTA NN. Some features have been added just
because of this interaction. This is why it seems appropriate
to begin this Section with a brief overview of the system. Sub-
sequently, we present an idea of the circuit and its transistor
level implementation. As the proposed circuit is the analog
solution, it is important to discuss various issues that appear
during the realization of such circuits and that may impact the
parameters of the circuit.

A. An overview of the realized analog WTA NN

A block diagram of the overall WTA NN is shown in
Fig. 1 (top). The NN is composed of several blocks that
perform different operations in the system but simultaneously
very closely cooperate with each other. Particular neurons are
composed of equal channels that operate fully in parallel. A
single channel contains two blocks. The first one in the chain is
the DCC that calculates the following signals: dli = |xi−wli|2
(or dli = |xi − wli| in the L1 mode), dηli = η · |xi − wli|,
sli = sign(xi − wli) and sli. If a given neuron becomes the
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Fig. 1. WTA neural network: (top) a general block diagram [9], (bottom)
microphotograph of a prototype NN with 12 calculation channels (4 neurons
with 3 inputs) realized in the CMOS 0.18 µm technology

winner, the dηli signal is used by its adaptation mechanism
(ADM), which is a second component of the channel, to update
its weight wli. The 1-bit signals sli and sli throughout a set of
switches control the ADM block that performs the following
operation:

wli(k + 1) = wli(k) + (sli − sli) · dηli(k) (3)

The usage of the sli and sli signals enabled a substantial
simplification of the structure of the ADM block [10].

The dli signals coming from particular channels in a given
neuron are summed in a junction. The resultant current,
Ddccl =

∑
i dli, is a real distance between this neuron and

a given learning pattern X . Each neuron additionally contains
a CONS block (conscience mechanism), which is composed of
a counter (CNR) that counts the wins of this neuron, as well
as a converter that converts the value stored in the counter
to the output current, Dconsl. This signal is then summed
with a given Ddccl signal. As a result, the CONS mechanism
artificially increases the real distance if a given neuron tries
to dominate in the learning process. The resultant signal,
Dl = Ddccl + Dconsl, is then provided to the WSC, whose
role is to determine which neuron is the winner.

The number of the channels in a single neuron is equal to the
number of the NN inputs, n, so the total number of channels
in the overall NN equals n · m, where m is the number of
neurons (NN outputs). The microphotograph shown in Fig. 1
(bottom) illustrates a placement of particular components in
the chip realized in the TSMC CMOS 0.18 µm technology.

B. The proposed circuit

Block diagram of the proposed DCC is shown in Fig. 2,
while particular components of this circuit are illustrated in

Fig. 3. First, a given input learning pattern X coming from a
learning set is provided to the inputs of the chip and directly
used as the inputs of the DCC in each neuron in the NN. The
core module of this circuit is the ABS block, shown in Fig. 3
(a), that calculates the absolute value of the (xi − wli) term
for each neuron weight, wli. This block is controlled by a
simple I-mode comparator, shown in Fig. 3 (a) that compares
a given input signal, xi, with a corresponding weight, wli. The
xi and the wli signals are currents. A digital output signal, sli,
of the comparator controls the switches in the ABS block in
such a way that the larger of these currents is directed as a
positive signal to the path that is composed of only PMOS-
type current mirror (CM) (M11-M12). The smaller signal
additionally flows throughout the inverting NMOS-type CM
(M13-M14). As a result, the output signals of particular ABS
blocks are always equal to |xi − wli|.

The last feature is quite useful, as it allows us to realize in
a simple way two distance measures in a single chip. These
two measures i.e. the Euclidean (L2) and the Manhattan (L1)
ones can be described, as follows:

DL2 = A ·

√√√√ n∑
i=1

(xi − wli)2 (4)

DL1 = A ·
n∑
i=1

|xi − wli| (5)

In the expressions above, A is a constant that is determined
by transistor sizing. Obviously, as for each, lth, neuron in the
NN DL2,l ≥ 0, therefore for any two neurons, α and β, if
DL2,α<DL2,β then D2

L2,α<D
2
L2,β . For this reason, both the

L2 measure and a resultant L22 one lead to the same results in
the process of identifying the winning neuron (viz. ranking the
signals), and therefore the rooting operation can be omitted.
The resultant L22 measure can be described as follows:

DL22 = A ·
n∑
i=1

(xi − wli)2 = A ·
n∑
i=1

|xi − wli|2 (6)

In the case of the L22 measure, the rooting operation that
substantially contributes to the complexity of the overall DCC
is not required. Note that in (5) and (6) the same term,
|xi−wli|, is used. This allows for an easy transition between
both distances. In the proposed circuit the transition requires
switching only four switches per each channel (in Fig. 2 only
two are shown for simplicity). As a result, in the “L1” mode
the output signal of the ABS block bypasses the squaring
circuit (SQR), shown in Fig. 3 (b). All switches are controlled
by a single bit only (L1 = L2), while the mode can be changed
even during the learning process of the NN. This comes as a
significant advantage over the circuit proposed in [8], in which
a given measure had to be determined in advance during the
design process of the chip.

The ability to work with two different measures is an
important feature. The system level investigations show that it
is beneficial to use the L2 or the L22 measure, for example,
at the beginning of the learning process, while after the first,
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Fig. 2. Block diagram of the proposed analog, current-mode, distance
calculation circuit (DCC).
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Fig. 3. Main components of the proposed DCC: (a) current mode comparator
(CMP) and absolute function block (ABS), (b) one-quadrant currents squaring
circuit (SQR) [6] with additional currents IREF1 and IREF2.

rough, phase the learning process can be continued with the
L1 measure. This speeds up the overall learning process and,
additionally in the hardware realization, reduces the power
dissipation. This issue has been studied in [32]. Selected
system level simulation results are presented in Fig. 4. The
figure presents quantization error after completing the learning
process. The value Qerr = 16.84e− 3 is optimal in this case
and means that all neurons became representatives of different
data classes and are located in the centers of these classes.
Particular learning patterns X are in this case uniformly spread
around these centers. The presented results show that in case
of the NNs with the number of neurons up to 400 the L1
measure enables reaching the same or better results. For larger
NNs the use of the L2 measure in many cases leads to better
results. The simulations of the learning process show that
the determinative phase is the very beginning of the learning
process. In this phase it is beneficial to use the L2 mode, while
later the NN can be trained with the L1 distance measure.

Fig. 4. Quantization error after completing the learning phase of the NN with
different numbers of neurons. Comparative results for two distance measures.

Another advantage of having the positive value at the output
of the ABS block is the possibility of using a simple one-
quadrant SQR circuit to obtain the L22 distance measure. In
the proposed solution, we have used an SQR circuit proposed
in [6], shown in Fig. 3 (b). The circuit, originally implemented
in the CMOS 2 µm technology, has been redesigned and
optimized in the CMOS 0.18 µm process. To make it more
flexible and to improve its performance (the shape of the
output parabola), we have added two current sources, IREF1

and IREF2, controlled by biasing voltages, VB1 and VB2. The
IREF1 DC current enables locating the input signal in an
optimal region, in which the values of the output signal are
close to theoretical values. The IREF2 current, on the other
hand, enables adjusting the level of the signal provided to the
Winner Selection Circuit (WSC) that in the implemented WTA
NN is the next block in the signal processing path. This feature
is very useful if the number of the inputs of the NN is one
of the parameters. It is worth to note that the minimal values
of the inputs and the weights currents are usually larger than
1 µA to avoid the situation in which transistors in the SQR
block operate in the underthreshold region. In this case, the
circuit is very slow. The performance of the SQR circuit is
presented in next section.

The IABS currents, coming from particular ABS blocks in a
given neuron, are summed in a junction. The resultant sum is
proportional to a given distance measure. In Fig. 2 the distance
is represented by the current IDCCl

defined as:

IDCCl
=

n∑
i=1

Isqli(k) (7)

or

IDCCl
=


A ·

n∑
i=1

|xi(k)− wli(k)|2, for L2

A ·
n∑
i=1

|xi(k)− wli(k)|, for L1
(8)

where: wli(k) is the i-th weight of an l-th neuron in the k-th
learning cycle.

The proposed DCC has several outputs, as shown in Figs. 2
and 3 (a). One of them is the IDCCl

current provided to
the WSC block, as described above. Additionally, particular
IABSli currents multiplied by a learning rate η, which in
this case is controlled by four 1-bits signals (b0, . . . b3), are
provided to corresponding ADM blocks along with particular
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digital 1-bit sli signals. Multiplication by η is performed
in a digital-to-analog converter (DAC), which is a multi-
output current mirror (CM) with binary weighted output
transistors, controlled by particular bits of the η parameter
(transistors M17-M20 in Fig. 3 (a)). The values of η vary
in the range in-between 0 and 15/16 with a step of 1/16
(η = b0/16 + b1/8 + b2/4 + b3/2).

One of the advantages of the proposed circuit is the parallel
operation of particular ABS blocks. For the NN with n inputs,
each neuron contains n ABS blocks. A total number of these
blocks in the overall NN equals m · n, where m is the
number of neurons. The proposed DCC operates without using
a controlling clock that substantially simplifies the structure of
this circuit and reduces the calculation time.

C. Implementation issues in the proposed DCC

The problem important for large NNs containing hundreds
neurons is the chip area. Each neuron contains its own DCC,
while the number of the ABS blocks in each DCC is equal
to the number of the inputs of the NN. For this reason, the
structure of the DCC has to be relatively simple to keep the
area small and the power dissipation of the overall NN low.
On the other hand, the simplification of the circuit should
not affect negatively the learning process of the NN. During
the design and optimization process of the DCC, different
negative effects have to be taken into account. They include,
for example, the mismatch effect, the body effect and the
channel length modulation (CLM) effect.

1) An influence of the body effect on the circuit precision:
In several reported cases [1], [36], [42] the body effect has
been considered to be the factor that reduces the circuit
precision, with providing the methods that enable reducing
its impact on the behavior of the circuit. In [1], for example,
all PMOS transistors with the source terminals not connected
to VDD voltage have been located on separate n-wells coupled
with these terminals, to ensure that the source and bulk (sub-
strate) voltage (VSB) equals 0. In such a configuration the volt-
age across the reversed-biased well-to-substrate capacitance
depends upon the value of the gate to source (VGS) voltage
of the transistor. As a result, as this voltage is varying over
time, the well-to-substrate capacitance is being dynamically
recharged that slows down the circuit [1].

In contrast to the solution proposed in [1], to avoid the
body effect, we have designed the overall DCC in such a
way that sources of all transistors in the NMOS and PMOS
CMs are connected to corresponding supply voltages, and thus
their VSB = 0. To make it possible we have used simple
CMs instead of the cascaded ones. An additional positive
effect of this is a relatively small value of the headroom
voltage that enables the circuit to work with smaller supply
voltages. A disadvantage of using simple CMs is small output
impedance that enlarges the influence of the CLM effect.
Fortunately, in the proposed solution this influence is relatively
small, as the loads of particular CMs are input transistors
of subsequent mirrors which are diode-connected. Let us
consider, for example, the mirror composed of the M15 and
M17–M20 transistors in the ABS block, shown in Fig. 3 (a).

Fig. 5. VDS voltage across DAC output transistors as a function of input
current to the DAC (see Fig. 3 (a)), plotted for various typical loads.

Fig. 6. An example illustration of a dependency between transistor sizes of
the CMOS transistor and the σ∆VTH parameter [44].

Fig. 7. A review of the threshold voltage mismatch in different CMOS
technologies – a comparison made on the basis of the Pelgrom plots.

As the current η · IABSli increases, the VGS voltage of the
loading PMOS CM, located in the subsequent ADM block
(schematically shown in Fig. 3 (a)), increases as well, resulting
in the output VDS voltage varying only moderately, as shown
in Fig. 5 (curve A). For the comparison, we present also the
VDS voltage for the resistive (B) and the active loads (C).
As in case of the curve (A) the most stable values of the VDS

voltage are for ID >1 to 2 µA, the designed WTA NN usually
operates in this range, with some exceptions.

2) Impact of the mismatch effect: Another problem, com-
mon to current mode circuits, is the mismatch effect that
modifies the gain of the CM. We have studied this problem
in more detail in the context of the ADM block described
in [10], but as that circuit uses similar CMs, the conclusions
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are applicable also in case of the proposed DCC. One of the
common ways to present dependency between the mismatch
effect and transistor sizes for a given CMOS technology is a
Pelgrom plot [43]. An example diagram of this type is shown
in Fig. 6. In this case standard deviation of a given parameter
(σ∆VTH in this example) is plotted versus 1/

√
W · L [44],

[45], [46], [47], [48], where W · L is the area of the transistor
gate:

σ∆VTH[mV] = f(1/
√
W · L) [1/µm], (9)

Waveforms visualized on Pelgrom plots are linear functions
with a constant slope denoted as AVT. One can notice that the
mismatch depends on transistor sizes. The larger transistors
are used, the smaller is the 1/

√
W · L factor and, in turn,

the smaller is the mismatch. In each CMOS technology there
are some minimum allowed sizes (W/L) of transistors. In the
TSMC CMOS 0.18 µm process they equal 600/180 [nm]. Such
transistors should not be used in current-mode analog circuits,
as the gain error of the CM could became in this case as high
as 100 % [10]. For this reason we oversized the transistors to
suppress this error. When increasing the sizes of the transistors,
it is necessary to bear in mind the values of the currents that
flow through the CM. For a given value of the currents, if we
increase transistor sizes, we improve the mismatch properties
that reduces the gain error of the CM, but we also decrease
the gate-to-source voltage (VGS) of the transistors. If the VGS

voltage decreases, the gain error of the CM increases [10], so
we have two contradictory phenomena. As a result, for each
current value optimum sizes should be found. In case of the
proposed DCC working with currents at the level of 2 – 10 µA
the optimum sizes (W/L) of the NMOS transistors equal 3/1
– 1/1 µm, while of the PMOS transistors equal 9/1 – 3/1 µm.
For such sizes of the transistors and given values of the signals,
a theoretical value of the gain error of a single CM reaches a
local minimum that does not exceed 2 % [10].

One of the optimization techniques we used in case of the
proposed DCC relies on minimizing the number of CMs on
the path in-between the inputs and the output of the DCC, as
theoretically the error accumulates along the path. The usage
of the comparator and the switches allowed us to reduce the
number of CMs on a single path (excluding the SQR circuit)
to maximum 3. For the comparison, in the circuit proposed in
[1] the number of CMs on the corresponding path equals 4 or
5. Some error is introduced by the SQR circuit, as shown in
Fig. 10, but this error occurs only when the circuit operates
in the L22 mode.

What is interesting is how the circuit parameters depend on
the technology. Fig. 7 presents a comparative study between
different CMOS technologies ranging from 32 nm to 1.2 µm.
On vertical axis are the values of the σ∆VTH parameter for
transistor gate areas normalized to 1 µm2 i.e. directly the
values of the AVT parameter. The proposed circuit has been
realized in the CMOS 0.18 µm process, as this technology
provides a reasonable price to parameters ratio. If the project
would be redesigned in the never process, the chip area
could be reduced without compromising on the precision. For
example, comparing the 65 nm and the 0.18 µm technologies

Fig. 8. Layout of a single channel of the proposed DCC. The area of this
block equals 1280 µm2. The area of the overall DCC composed of three
equal channels equals 3840 µm2

one can notice that the values of AVT equal 3.5 and 5.8,
respectively. This means that in the 65 nm process a given
value of σ∆VTH will be achieved for the 1/

√
W · L factor

5.8/3.5 times larger than in the 0.18 µm technology, i.e. for
the area of the transistors (3.5/5.8)2 = 0.36 times smaller.

D. Realization of the proposed DCC in the CMOS technology

The proposed DCC has been implemented in the CMOS
0.18 µm technology, as a component of a fully analog WTA
NN with three inputs, containing four neurons i.e., twelve
equal signal processing channels. Each channel represents a
single xi − wl,i pair. The number of the neurons in this
prototype NN is small, but as each of its building blocks
has been designed by us from the ground up, the overall
system, as well as particular components had to be carefully
verified before a larger system could be realized. The outputs
of particular channels are shorted in a junction. This approach
enables an easy realization of a modular NN with programmed
number of inputs, in which particular channels could be shared
between different neurons.

The layout of a portion of a single channel that contains
the realized DCC is shown in Fig. 8. The chip area of the
DCC equals 1280 µm2. The remaining area is occupied by
the ADM block. The b0 – b3 digital signals in the ABS block
control the value of the learning rate η, as described in details
in Section III-B. We comment on these results in Section V.

IV. EXPERIMENTAL VERIFICATION OF THE PROPOSED
CIRCUIT

In this section, we present selected postlayout simulation,
as well as the measurement results that illustrate the behaviour
and parameters of the realized circuit. Due to the large number
of signals that had to be measured or introduced to the chip,
only selected internal signals could be connected to external
pads. Some signals were not connected in order to avoid their
distortion by the measurements. In this situation, simulations
enable observing those signals which are not available at the
outputs of the chip.

In the case of the measurements, the input signals were
voltages converted on resistors outside the chip to currents
introduced then to the chip. Inside the chip the currents
throughout a current mirror were provided to DCCs of par-
ticular neurons. The NN output signals were also currents,
but to measure them we used 10 kΩ resistors of class 0.1 %
connected in series with the output pads. Thus the signals have
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Fig. 9. Measurement results illustrating output currents from two selected
DCCs of the WTA NN implemented in the CMOS 0.18 µm technology
working in the L22 mode.

Fig. 10. Operation of the squaring circuit: (A) an input current, (B) the
resultant output current, (C) an ideal output signal.

been measured as voltages on the oscilloscopes, as shown in
Fig. IV-B (the L22 case). The presented results were typically
observed during the measurements of 15 samples of the chip.

A. Transistor level simulation results

Simulations enable the observation of the details of the
behavior of particular components of the NN seen as separate
blocks. One of the blocks, that has been verified in this
way, is the SQR circuit. Its performance is illustrated in
Fig. 10. The resultant curve differs slightly from the theoretical
waveform, but these differences are seen mainly for large input
signals. From the point of view of the classification problem
far more important are the results obtained for small input
signals, because they occur in neurons that are located in the
proximity of the corresponding learning patterns. It is also
worth noting, that Fig. 10 does not show the static input-
output characteristic. We applied a triangular signal at the
input of the circuit to observe its dynamic properties. A certain
asymmetry visible in the vicinity of the zero value results from
the resultant transient state.

To illustrate the performance of the overall DCC, selected
postlayout simulation results are presented in Fig. 11. In this
case the simulations enable a direct observation of the output
signals of the comparators, which is not possible in laboratory
tests. The Ix and Iw signals used in the tests have been selected
in such a way to observe properties of the circuit in various
scenarios, including the worst case scenario, in which the

TABLE I
PERFORMANCE COMPARISON BETWEEN REPORTED DCCS

Ref.
(Techn.)

No.
inputs

A [mm2]
(1 input)

fS
[MHz]

P [mW]
(1 input)

Error
[%]

FOM1
[1/nJ]

[1]
(0.6µm)

4x5 10.4
(0.52) 1 14.95

(0.75)
1 1.33

[8]
(1.5µm)

2 0.0061
(0.00305) ND 0.2

(0.1)
5–15 –

[7]
(2µm)

16x16 1.2
(0.0047) 0.33 0.7

(0.00273)
ND 120

[36]
(0.25µm)

4x6 0.624
(0.026) 1 ND

(−)
0.4 –

[35]
(0.35µm)

2 ND
(—) 20 0.733

(0.367)
3 27.3

This
work 3 0.0038

(0.00128)
12 (L1)

10 (L22)
0.055 (L1)

0.085 (L22)
1 (L1)

4 (L22)
656 (L1)

353 (L22)

input signals of particular ABS blocks are almost equal. In
the period from 0 to 2.7 µs they often differ by 1 % only
(for particular ABS blocks). Additionally, their values have
been distributed over relatively large range in-between 2 and
7 µA. The signals in this period are staircase waveforms. This
allows for dynamic properties of the circuit to be observed.
Additionally, after settling the outputs of the comparators such
signals allow to determine the static input-output properties
of the ABS block, as well as of the overall DCC. For the
input signals with almost equal values the settling time of the
comparators is the longest. In practice, such situation is rather
rare, as the signals in a real learning process usually differ
by much more than 1 %. Average power dissipation equals
55 µW. This means that energy consumption per a single
distance calculation in the worst case scenario (settling time
≈85 ns) equals 4.5 pJ.

B. Measurement results

Selected measurement results are shown in Figs. 9 and 12
for the DCC working in the L22 mode. In the presented case
the NN performs a typical learning process, and therefore it is
not possible to precisely control the waveforms of the weights,
as in the simulations of a separate DCC, shown in Fig. 11.
In the L22 mode the power dissipation was equal to 85 µW.
This value has been determined on the basis of the postlayout
simulations (as in the L1 case) for a separate DCC.

V. DISCUSSION OF THE OBTAINED RESULTS

A. Assessment of the circuit precision

An important issue is to estimate how accurate the circuit
calculates the output signal for given input signals. It can be
done by the assessment of an error at the output of the DCC
that can be calculated as follows:

ERROR =

∣∣∣∣Iout t − Iout r

Imax

∣∣∣∣ · 100 [%], (10)

where Iout t is a theoretical value of the output current, while
Iout r is its real value – measured in this case.
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Fig. 11. Postlayout simulations of the DCC for input currents in the range of 2–7 µA for the L1 mode: (a, b, c) input (Ix), weight (Iw) and the output signals
from the comparators, (d) the theoretical (Iout t) and real (Iout r) DCC output currents and the power dissipation, (e) error: Iout t − Iout r in reference to
the maximum value of the Iout current. The output current is normalized i.e. is divided by the number of channels.

Fig. 12. Measurement results for a single neuron operating in the L22 mode: (a) input training signals (Ix), (b) corresponding weights (Iw), (c) theoretical
(Iout t) and real (Iout r) DCC output currents, (d) the error defined as in Eq. 10.

The static error can be accurately determined only for
constant input signals (steady state) visible, for example, in
the period in between 0 and 2.7 µs in Fig. 11. In this case,
for the circuit working in the L1 mode the steady state error
does not exceed 1 %. In the measurements, shown in Fig. 12
for the L22 mode, the steady state error is usually at the level
of 2 %, sometimes exceeding 3-4 %. The main source of the
increased error in this case is the SQR block (see Fig. 10), but
this block can be replaced by a more precise one if needed.
Some portion of the error results also from the initial V-I and
the final I-V conversion performed outside the chip, as well
as from the noise visible in the signal. The presented results
show that the DCC in the L1 mode is more accurate, which
is an advantage, as NN mostly operates in this mode. For the
comparison, in the circuit proposed in [8], also designed for

the application in ANN, the error often exceeds the level of
5-10 %, for the output currents one order of magnitude larger.

A general observation confirms that the values of the signals
affect both the accuracy and speed of the circuit. We observe
that the delay is, more or less, linearly proportional to an
average level of the input currents. We performed simulations
of the circuit working in the L1 mode for small currents in
the range in between 100 nA and 600 nA. For such values the
steady state error was usually larger than 2.5 %, while a delay
introduced by the DCC was equal to 400 ns for an average
value of the input currents of 600 nA. For the currents at the
level of 200 nA the delay was 650 ns. However, the power
dissipation is smaller in this case , as the speed is lower, and,
therefore, the energy per a single calculation cycle decreases
only moderately, while the errors are larger. This confirms that
it is not reasonable to use very small input signals.
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TABLE II
PERFORMANCE COMPARISON BETWEEN REPORTED DATA CLASSIFIERS AND THE REALIZED WTA NN

Ref.
(Techn.) Realization No.

words
Vector
length

Distance
measure

A [mm2]
(per 1 unit∗)

fS
[MHz]

P [mW]
(per 1 channel)

FOM1
[1/nJ]

FOM2
[1/nJ]

[39]
(0.18µm)

digital 32 9 Hamming / L1 0.55
(1.91e-3) 6.3 51.3

(0.178) 35 3.92

[40]
(65nm)

digital 128 16 L1 1.48
(0.72e-3)

0.053#
1.25

3.56
(0.00174)

30.48#
719

1.9#
44.94

[41]
(0.18µm)

digital 64 4 Hamming 3.08
(12.03e-3)

3.92#
20

36.5
(0.143)

27.5#
140.3

6.88#
35

This work
(0.18µm)

analog
(I-mode) 4 3 L1 / L22 0.02∗

(1.67e-3) 7∗,#
0.22∗

(0.0183) 368# 40.87#

∗ Data for the circuit without the adaptation block and the conscience mechanism
# Data for the worst case scenario

B. Comparative study with other state-of-the-art solutions

As described in Section II, a direct quantitative comparison
of the proposed DCC with other circuits of this type is not
straightforward, as particular solutions were designed for dif-
ferent applications and therefore offer different functions, and
have different numbers of inputs. To facilitate the comparison
we calculate the Figure-of-Merit (FOM) using Eq. 1. The
results for selected circuits are presented in Table I. In several
reported circuits, certain data are not present, which makes the
calculation of the FOM impossible for these cases.

The proposed circuit has been designed in newer technology
than other solutions, but to minimize the mismatch effect,
we had to strongly oversize transistors used in the circuit.
That did not allow us to fully utilize the advantages of the
never technology used in this case. The circuit reported in
[7] features the FOM comparable to our DCC. However, this
circuit does not offer the functions available in our solution,
which are required in ANNs, as discussed in Section II.

In our opinion, it is more effective to compare larger systems
of similar functionality that use DCC components. In Table II
our prototype WTA NN is compared with the recently reported
data classifiers which, to a certain degree, are similar to our
NN. Such systems are composed of many DCCs working in
parallel, and the WSC block that determines which of the
DCCs provides the smallest signal. The main difference relies
on the lack of the adaptation block in the solutions described
in [39], [40], [41]. All these solutions are digital circuits that
theoretically make it possible to use transistors with minimal
sizes for a given technology. On the other hand, in the case
of digital realization of the given function, a larger number
of transistors will be required. As a result, the chip area in
our solution per one calculation unit is the smallest among the
circuits designed in the CMOS 0.18 µm technology. The ‘unit’
is an equivalent to the calculation channel in our NN (shown
in Fig. 1 bottom). The number of units can be calculated as
number of words (equivalent to neurons in our NN) times the
vector length (No. of the inputs of the NN).

In comparison with the circuit reported in [40], designed in
the CMOS 65 nm technology, the chip area of our NN (without
the ADM and the CONS blocks) per one unit is only two times
larger. Nevertheless, considering the results shown in Fig. 7,
one can notice that AVT in the CMOS 65 nm technology (3.5
[mV·µm] [49] (page 515)) is 1.65 times smaller than in the

0.18 µm process (5.8 [mV·µm]). As a result, if our NN would
be ported to 65 nm technology, the sizes of the DCC could
be reduced theoretically by 64 %, without compromising on
precision. This problem has been discussed in more detail in
Section III-C2.

It is worth noting that the presented circuit is a proof of
concept, designed to verify the general idea of the proposed
solution, as well as its performance. For this reason the chip
area was not the subject of a strong optimization (some blank
areas are visible). Taking it into account a further reduction of
the area even by 25 % is possible. Our circuit was designed
to enable a choice between two distance measures, which
is a feature not available in other solutions. However, the
simulation results show that the SQR block that occupies 40 %
of the area currently occupied by the DCC can be eliminated
in most cases, as discussed in Section III-B.

Comparing the FOM (Eq. 2), it can be observed that
the proposed WTA NN offers better parameters than other
classifiers. As regards our circuit, we always consider the worst
case scenario, in which the settling time of the comparators
is the longest. This is mandatory, if viewed from the point of
view of the learning algorithm, in which the winning neuron
has to be indicated properly. For the comparison, in [40],
[41] an average search time can be taken into account that is
acceptable in case of the application of the circuit in pattern
recognition. For this reason, in the case of the circuit reported
in [40] the FOM for an average search time is larger than in
our DCC, but for the worst case scenario it is even one order
of magnitude smaller.

The realized prototype chip contains a small number of
neurons (12 channels in 4 neurons). We did not design larger
NN, as all its components were designed from the ground up,
and thus the focus was on the optimization of their parameters
rather than on increasing the number of neurons. Nevertheless,
the size of the NN can easily be increased by duplicating the
channels. In many practical applications the number of neurons
can be limited to a relatively small value. For example, in [50],
[51] it has been shown that to classify the ECG complexes the
number of neurons can be limited to 30–130 only.

VI. CONCLUSIONS

The paper presents a novel distance calculation circuit
(DCC) suitable for low power self-organizing neural networks
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implemented at the transistor level in the CMOS technology.
The circuit is programmable, i.e. it can operate with two
commonly used distance measures, the Manhattan and the
Euclidean ones. This is one of the advantages. The circuit
features a simple structure, resulting in a relatively small
silicon area. A single channel composed of the comparator,
the abs() function and the squaring blocks occupies the area
of 1280 µm2. The comparison of the proposed DCC as well
as the overall NN with other counterpart circuits of this type
shows that the power dissipation related to attainable data rate
is very low as well. These parameters strongly depend on the
values of input signals as well as on the distance measure used
in a given situation.

In comparison with other DCCs, the precision of the pro-
posed circuit is relatively high. When reporting measurements,
the precision was slightly lower due, mostly, to V-I and
I-V conversions performed outside the chip using resistors.
Another source of the nonidealities is the SQR block that in the
following prototype chip will be either improved or eliminated.
The last conclusion results from the simulations carried out
by means of the software model of the NN that show that
the L1 measure in most cases allows to obtain comparable
results of the learning process and, at the same time, requires
substantially simpler hardware.
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