
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Łukasiewicz fuzzy logic networks and their ultra low power hardware
implementation

Rafa" D"ugosz a,�, Witold Pedrycz b,c

a Swiss Federal Institute of Technology in Lausanne, Institute of Microtechnology, Rue A.-L. Breguet 2, CH-2000, Neuchâtel, Switzerland
b University of Alberta, Department of Electrical and Computer Engineering ECERF Building, Edmonton, Canada T6G 2V4
c Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

a r t i c l e i n f o

Available online 18 January 2010

Keywords:

Neural networks

Logic neurons

Fuzzy sets

CMOS analog devices

Ultra low power electronics

a b s t r a c t

In this paper, we propose a new category of current-mode Łukasiewicz OR and AND logic neurons and

ensuing logic networks along with their ultra-low power realization. The introduced circuits can

operate in a wide range of the input signals varying in-between 10 nA and 10mA. For low current values

the operating point of transistors is set in the under threshold region. In this region, the mismatch

between transistors exhibits a far stronger impact on the current mirror precision than the one

observed in case of the strong inversion region. The proposed design alleviates this problem by reducing

the number of current mirrors between the input and the output of the neuron and of the overall

network to only one. Łukasiewicz operators require only summation and subtraction operations, which

make them suitable for realization in analog current-mode technique. In this case even large number of

input signals can be summed in a simple junction in a single step. This is the reason of choosing

Łukasiewicz operations in the proposed circuit. Using other t-norm and t-conorm operations with

multiplication and division operations would make the realization of the circuit very difficult and

inefficient.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Neurocomputing has emerged as a synonym of adaptive
processing and significant learning capabilities. Fuzzy sets,
treated as one of the branches of Granular Computing, are about
processing information granules which are commonly encoun-
tered in human perception and information processing. The
limitations of these two technologies (viz. fuzzy sets and
neurocomputing) when being considered individually, are sig-
nificantly eliminated by forming hybrid architectures known as
neurofuzzy systems. In this synergistic environment we take full
advantage of the learning capabilities of neural networks while
benefiting from transparency of processing coming hand in hand
with fuzzy sets. Fuzzy neural networks as introduced e.g., in
[9,11] are examples of such hybrid architectures of neurocomput-
ing.

In a nutshell, we can view these networks as an essential
generalization of two-valued digital circuits which are now
augmented by significant learning capabilities and flexibility to
deal with continuous inputs viewed as truth values encountered
in fuzzy logic and multivalued logic. As such, we can refer to a
plethora of areas in which the use of neurofuzzy structures of this

nature can be considered including: (a) pattern recognition, (b)
rule-based systems (and approximate reasoning, in general), (c)
logic-oriented models, (d) fuzzy and neural control, to name a few
general categories.

Surprisingly enough, there has been a very limited research in
hardware implementation and ensuing design practice of archi-
tectures of neurofuzzy systems. We can refer here to a few
publications dealing with this subject matter, cf. [1,4,7,8]. In some
sense, this is quite impeding considering a wealth of new
potential applications of intelligent systems associated with
mobile and pervasive computing as being vigorously promoted
in the realm of ambient intelligence (AmI). One of the funda-
mental quests comes with regard to power consumption whose
minimal level becomes highly beneficial to mobile devices. This
somewhat implies intensive studies along the line of analog
electronics.

The objective of this study is to introduce one of the variants of
neurocomputing coming in the form of fuzzy neural networks
whose neurons are realized by means of Łukasiewicz operators
(and and or operators). The Łukasiewicz operators are a sound
alternative which offers enough flexibility with regard to under-
lying logic processing which comes with appealing features
supporting the hardware realization of these neurons.

The study is organized as follows. In Section 2, we start, with a
brief introduction to Łukasiewicz logic operators. The motivation
of choosing the Łukasiewicz operators in the context of realization

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.neucom.2009.11.027

� Corresponding author.

E-mail address: rafal.dlugosz@epfl.ch (R. D"ugosz).

Neurocomputing 73 (2010) 1222–1234



Author's personal copy
ARTICLE IN PRESS

of logic processors (LP) has been highlighted in Section 3. In
Section 4, we propose Łukasiewicz networks when using the
‘‘classic’’ approach to the realization of the fuzzy operations
proposed by Yamakawa in [15]. The discussed limitations of this
classic approach led us to the proposal of the new approach to the
implementation of such networks (Section 5), along with simula-
tion results reported at the transistor level. The conclusions are
offered in Section 6. Throughout the paper we will adhere to the
standard notation used in fuzzy sets.

2. Łukasiewicz logic operations

Łukasiewicz logic connectives arise as one of the possible
realizations of logic operators applied to fuzzy sets [6]. Those are
interesting examples of a broad category of logic connectives
known as t-norms and t-conorms. Interestingly, those operations
were originally introduced by Łukasiewicz in his original studies
on three-valued and multiple-valued logic. More formally, the
Łukasiewicz and operator is described as follows:

atb¼maxð0; aþb�1Þ ð1Þ

while the or operator is governed by the following expression

asb¼minð1; aþbÞ ð2Þ

where the (logic) truth values a and b assume values in the unit
interval.

These logic connectives can be arranged together in the
constructs of logic neurons that are viewed as generic processing
units encountered in logic neurocomputing. Logic neurons [10]
offer functionality which embraces advantages of neural networks
as far as learning is concerned and fuzzy logic which becomes
advantageous with respect to the associated interpretation
abilities. The logic neurons come with well-defined semantics,
which is drawn from the nature of the underlying logic processing
inherent to fuzzy computing. We encounter two fundamental
categories of fuzzy neurons.

OR neuron: this neuron realizes an and logic aggregation of
inputs x=[x1 x2yxn]T with the corresponding connections
(weights) w=[w1 w2ywn]T and then summarizes the partial
results in an or-wise manner (hence the name of the neuron). The
concise notation underlines this flow of computing, y=OR(x; w)
while the realization of the logic operations gives rise to the
expression (commonly referred to as an s–t combination or s–t
aggregation)

yOR ¼ S
n

i ¼ 1
ðxitwiÞ ð3Þ

Here ‘‘t’’ denotes a certain t-norm whereas ‘‘s’’ refers to some t-
conorm (s-norm). Bearing in mind the interpretation of the logic
connectives, the OR neuron realizes the following logic expression
being viewed as an underlying logic description of the processing
of the inputs

yOR ¼ ðx1 and w1Þ or ðx2 and w2Þ or . . . orðxn and wnÞ ð4Þ

Apparently here the inputs are logically ‘‘weighted’’ by the values
of the connections (wi) before producing the final result. In other
words we can treat ‘‘y’’ as a truth value of the above statement
where the truth values of the inputs are affected by the
corresponding weights. Noticeably, lower values of wi discount
the impact of the corresponding inputs; higher values of the
connections (especially those being positioned close to 1) do not
affect the original truth values of the inputs. In limit, if all
connections wi, i=1, 2,y,n are set to 1 then the neuron produces a
plain or-combination of its inputs:

yOR ¼ x1 or x2 or . . . or xn ð5Þ

The values of the connections set to zero eliminate the
corresponding inputs. Computationally, the OR neuron exhibits
nonlinear characteristics (that is inherently implied by the use of
the t- and t-conorms).

AND neuron: the neurons in the category, denoted by
y=AND(x; w) with x and w being defined as in case of the OR
neuron, are governed by the expression

yAND ¼ T
n

i ¼ 1
ðxiswiÞ ð6Þ

In comparison with the previous category of the neurons, here the
or and and connectives are used in a reversed order:

yAND ¼ ðx1 or w1Þ and ðx2 or w2Þ and . . . and ðxn or wnÞ ð7Þ

first the inputs are combined with the use of the t-conorm and the
partial results produced in this way are aggregated and-wise.
Higher values of the connections reduce impact of the corre-
sponding inputs. In limit wi=1 eliminates the relevance of xi. With
all wi set to 0, the output of the AND neuron is just an and

aggregation of the inputs

yAND ¼ x1 and x2 and . . . and xn ð8Þ

2.1. Additional functional features of logic neurons

While the above constructs could be viewed as generic logic
neurons, there are two interesting and useful augmentations of
the neurons which bring them even closer to the topologies of
‘‘standard’’ neurons existing in the realm of neurocomputing.

Incorporation of bias term: In analogy to the generic neuron as
presented above, we could also consider a bias term, denoted by
w0 A[0, 1] which enters the processing formula of the fuzzy
neuron in the following way

for the OR neuron

yOR ¼ S
n

i ¼ 1
ðxitwiÞsw0 ð9Þ

for the AND neuron

yAND ¼ T
n

i ¼ 1
ðxiswiÞtw0 ð10Þ

We can offer some useful interpretation of the bias by treating it
as some nonzero initial truth value associated with the logic
expression of the neuron. For the OR neuron it means that the
output does not reach values lower than the assumed threshold.
For the AND neuron equipped with some bias, we conclude that
its output cannot exceed the value assumed by the bias. The
question whether the bias is essential in the construct of the logic
neurons cannot be fully answered in advance. Instead, we may
include it into the structure of the neuron and carry out learning.
Once its value has been obtained, its relevance could be
established considering the specific value it has been produced
during the learning. It may well be that the optimized value of the
bias is close to zero for the OR neuron or close to one in the case of
the AND neuron which indicates that it could be eliminated
without exhibiting any substantial impact on the performance of
the neuron.

Inhibitory functionality of logic neurons: Owing to the mono-
tonicity of the t-norms and t-conorms, the computing realized by
the neurons exhibits an excitatory character. This means that
higher values of the inputs (xi) contribute to the increase in the
values of the output of the neuron. The inhibitory nature of
computing realized by ‘‘standard’’ neurons by using negative
values of the connections or the inputs is not available here as the
truth values (membership grades) in fuzzy sets are confined to the
unit interval. The inhibitory nature of processing can be
accomplished by considering the complement of the original

R. D!ugosz, W. Pedrycz / Neurocomputing 73 (2010) 1222–1234 1223



Author's personal copy
ARTICLE IN PRESS

input, xi ¼ 1�xi. Hence when the values of xi increase, the
associated values of the complement decrease and subsequently
in this configuration we could effectively treat such an input as
having an inhibitory nature.

3. Logic processor in the processing of fuzzy logic functions: a
canonical realization

The typical logic network that is at the center of logic
processing originates from the two-valued logic and comes in
the form of the well-known Shannon theorem of decomposition
of Boolean functions. Let us recall that any Boolean function
{0,1}n-{0,1} can be represented as a logic sum of its correspond-
ing minterms or a logic product of maxterms. By a minterm of ‘‘n’’
logic variables x1, x2,y, xn we mean a logic product involving all
these variables either in direct or complemented form. Having ‘‘n’’
variables we end up with 2n minterms starting from the one
involving all complemented variables and ending up at the logic
product with all direct variables. Likewise by a maxterm we mean
a logic sum of all variables or their complements. Now in virtue of
the decomposition theorem, we note that the first representation
scheme involves a two-layer network where the first layer
consists of AND gates whose outputs are combined in a single
OR gate. The converse topology occurs for the second decom-
position mode: there is a single layer of OR gates followed by a
single AND gate aggregating or-wise all partial results.

The proposed network (referred here as a logic processor–LP)
generalizes this concept as shown in Fig. 1. The AND-OR mode of
the logic processor comes with the two types of aggregative
neurons being swapped between the layers. Here the first
(hidden) layer is composed of the AND neuron and is followed
by the output realized by means of the OR neuron.

The logic neurons generalize digital gates. The design of the
network (viz. any fuzzy function) is realized through learning. If
we confine ourselves to {0,1} values, the network’s learning
becomes an alternative to a standard digital design, especially a
minimization of logic functions. The logic processor translates
into a compound logic statement (we skip the connections of the
neurons to emphasize the underlying logic content of the
statement itself):

ifðinput1 and . . . and inputjÞ or ðinputd and . . . and inputf Þ then output

ð11Þ

The LP’s topology (and its underlying interpretation) is standard.
Two LPs can vary in terms of the number of AND neurons, their
connections but the format of the resulting logic expression is
quite uniform (as a sum of generalized minterms).

It is worth noting that there is an infinite family of t- and s-norms
which can be used in the realization of logic neurons. One has to be
cognizant that some of these operators are more suitable for
hardware realization. Let us consider some common cases in detail:

(a) The minimum operator and maximum operator are easy to
realize yet their input–output characteristics are limited. In
particular, we observe a so-called lack of interactivity between
the arguments. The operator exhibits an ‘‘extreme’’ behavior in
the sense it picks up the most extreme argument (viz. the one
with the minimal or maximal value). The result does not depend
on the location (numeric values) of other arguments.

(b) the product operator is free from this shortcomings yet the
multiplication operation is much more difficult to be realized in
hardware. This problem is especially visible in case of many
inputs like those shown in Eq. (7). In this case the multiplication
would have to be repeated n times, while known electronic
multipliers required to realize this task are either of low precision
or become overly complex.

Given these computational and implementation requirements,
we can arrive at conclusion that the Łukasiewicz connectives form
an interesting alternative as being computationally flexible
enough while still maintaining some features appealing from
the implementation perspective. Łukasiewicz operators require
only summation and subtraction operations, which makes them
suitable for realization in analog current-mode technique. In this
case even a large number of the input signals can be summed in a
simple junction in a single processing step that simplifies the
overall circuit.

Typical calculation scheme applied to Eqs. (4) and (7) is of
iterative nature. This means that first we calculate either the or or
the and operation using only two network inputs. Then the result
of this operation is used as the input to the same operation at the
second step together with the third network input. For n network
inputs we need n or or and operations realized in a cascade
manner. By using the Łukasiewicz operations, we reduce this
calculation scheme to a single step only, since summation of all
input signals represented by currents is realized in a junction in
parallel. This significantly speeds up the calculations realized by
such network and simplifies an overall structure of the circuit.

For illustrative purposes, Figs. 2 and 3 present input–output
characteristics of the AND and OR neurons being implemented by
means of the Łukasiewicz connectives. Note that the piecewise
linear nature of the characteristics is highly visible while the
detailed geometry of the neurons is implied by the values of the
connections. Likewise we note a piecewise (and hence nonlinear)
nature of the overall network.

4. Implementation of the OR and the AND neurons using
classic CMOS fuzzy operators

Basic fuzzy logic operators together with their classic CMOS
hardware implementation have been described in [15]. To realize
these operators, the current-mode technique is the most suitable
as it is suitable for an easy realization of summation and
subtraction operations. The literature study shows that this
technique is the most commonly used for this purpose [1,4,7,8].
The logic or and the and operators are also referred to as the
bounded sum and the bounded product, respectively [15]. Using
the approach presented in [15] we first propose the logic
processor shown in Fig. 4. This figure presents a simplified
diagram of the Łukasiewicz network that consists of two layers of
neurons. In this case, the network comes in the AND-OR
configuration, as shown in Fig. 1, although the dual
configuration, that is OR–AND, arises as another alternative
topology.

As mentioned above, the current-mode technique offers a very
effective platform for the implementation of the logic operators,
however it is a source of limited accuracy of these circuits. One of
the main problems encountered in this realization is a mismatchFig. 1. A topology of the logic processor in its AND–OR mode.

R. D!ugosz, W. Pedrycz / Neurocomputing 73 (2010) 1222–12341224



Author's personal copy
ARTICLE IN PRESS

between transistors present in the current mirrors [12]. Usually,
the threshold voltage mismatch, DVth, is assumed to be the main
reason causing mismatch between the transistors working in a
current mirror and therefore we limit our study to this parameter
only. In practice several other mismatch components will further
distort the signal. Assuming that both transistors have equal sizes
then in the under threshold region the current mirror’s gain that
results from DVth can be calculated as follows [2]:

I2

I1
¼ e�DVth=nVT ð12Þ

while in the strong inversion region is expressed as

I2

I1
¼
ðVGS�VTH�DVTHÞ

2

ðVGS�VTHÞ
2

ð13Þ

where VT is the thermal voltage (about 26 mV in the room
temperature of 300 K). The influence of the transistor dimensions
on the mismatch effect for different technologies has been
reported and studied in many papers. The example diagram
illustrating this phenomenon is shown in Fig. 5. For instance, in
the CMOS 0.18mm process, the standard deviation of the Vth

mismatch varies in-between 0.7 and 2.9 [mV] given that the
transistor gate’s area (W � L) varies in the range between 75 and
3mm2 [3].

In the under threshold region of operation, this effect
introduces to the current mirror a gain error of 3% for large
transistors; however this error could be as high as 11% for small
transistors with an example gate area of 3mm2. This effect is
illustrated in Fig. 6; refer to the upper curve. In the strong
inversion region—the lower curve in Fig. 6—the influence of the
mismatch on the gain is about 6–8 times smaller, but it is still
important in case of circuits with large number of intermediate
current mirrors like, for example, in the circuit shown in Fig. 4. In
this case the number of current mirrors between the inputs and
the output equals to 6. For large transistors with sizes of e.g. W/
L=15/3mm working in the strong inversion regime, the error of
10–15% is realistic, while in the under threshold region this error
could be even as high as 40–60%. This makes the precision of the

Fig. 2. Input–output characteristics of the AND neuron with 2 inputs (x1 and x2) and 2 corresponding weights; the cases from the left to the right are given for the following

weights (w1,w2): [(0,0); (0.2,0.2); (0.5, 0.5); (1,1)].

Fig. 3. Input–output characteristics of the OR neuron with 2 inputs (x1 and x2) and 2 corresponding weights; the cases from the left to the right are given for the following

weights (w1,w2): [(0,0); (0.2,0.2); (0.5, 0.5); (1,1)].

and1

or function

1n-

m
ax

(0
,1

-

1

11

AND neuron

1 1

m
ax

(0
,

-1
)

max(0,  -1)

OR neuron

1

and rodna

current mirror
PMOS

NMOS current mirror

mor1

min(1, mor2 ) min(1, mor n)  mandi

1
wOR1yAND

yOR

m
an

d1

m
in

(1
,

)
m

or
1

)
m

or
1

m

Fig. 4. Implementation of an example AND–OR Łukasiewicz network using

Yamakawa’s approach [14]. Terms mor i=xi+wi and mand i=yAND i+wOR i are used

for simplifying the variables description.

R. D!ugosz, W. Pedrycz / Neurocomputing 73 (2010) 1222–1234 1225



Author's personal copy
ARTICLE IN PRESS

network based on the classic approach shown in Fig. 4
insufficient.

Fig. 6 illustrates another interesting phenomenon. The given
values of the gain error are, for example, constant currents of
10mA. In the strong inversion region this error depends not only
on transistor sizes but also on the value of the gate to source
voltage, VGS, as shown in Eq. (13). Theoretically by increasing the
transistor sizes we limit this error due to improved matching, but
by keeping the currents at the same level we decrease the value of
the VGS voltage that increases the value of this error. As a result,
both effects compensate one another thus resulting in almost
constant value of this error seen in the bottom curve, with a
minimum value for the aspect ratio (W/L) of 9/3mm in this case.
To make some further performance improvement in the strong
inversion region possible it is necessary to increase the values of
the currents, which will increase the value of the VGS voltage.
Unfortunately increasing the currents increases the power
dissipation, so there is a trade-off between this parameter and
the circuit precision.

To overcome the serious drawback described above, we
propose the realization of new neurons described in the next
section. The circuits built in this manner take advantage of the
current mode, but the number of intermediate mirrors has been
significantly reduced. In this case, signal paths between the inputs
and the output of the circuit are controlled by simple current-
mode comparators, realized using binary CMOS inverters and
switches. This approach allows for significantly improved perfor-

mance, since now the error of the overall network is limited to the
error of a single current mirror only. Considering the results
presented in Fig. 6, in the proposed network the aspect ratios (W/
L) of 6/3 and 2/3mm have been selected for the PMOS and the
NMOS transistors respectively.

5. The proposed realization of the Łukasiewicz OR and AND
logic neurons

5.1. OR neuron

The output of the multi-input OR neuron when implemented
in software is commonly calculated in an iterative fashion by
using the following expression:

yOR ¼ ðððyand 1 or yand 2Þ or yand 3Þ or . . . or yand nÞ ð14Þ

where the outputs of the particular and functions are determined
as follows:

yand i ¼maxð0; xiþwi�1Þ ð15Þ

Analyzing this expression from the left, the first or function in (14)
returns either yand 1+yand 2 or 1, depending on which of these
components assumes lower value. If yand 1+yand 2 is smaller then
the next or function in the chain compares yand 1+yand 2+yand 3

with 1, returning the smaller of these terms. It can be shown that
if at least one of these or functions returns 1 then all other or

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1
1/sqrt (WL) [1/µm]

σ(
ΔV

T)
 [m

V]

10/7.2

1.9/2.7

4/4

1.4/1.9

0.35/5.3

0.25/7.2 &
0.55/3.3

4.2/0.45

7.1/0.25

10/0.18

1/1

Fig. 5. Influence of transistor sizes on threshold voltage mismatch in CMOS 0.18mm technology [2].

0

2

4

6

8

10

12

4321
the case (W/L)

e 
[%

]

strong inversion region

under threshold region

W/L=
1 / 3 µm

3 / 3 µm
9 / 3 µm 15 / 3 µm

Fig. 6. Influence of transistor sizes on the gain error of a single current mirror in under threshold (upper curve) and strong inversion (bottom curve) regions, in CMOS

0.18mm technology, for currents with an example constant value of 10mA and the supply voltage VDD of 1.8 V.

R. D!ugosz, W. Pedrycz / Neurocomputing 73 (2010) 1222–12341226



Author's personal copy
ARTICLE IN PRESS

functions also return 1. Since in hardware implementations many
operations can be performed in parallel, therefore in this case it is
much more convenient to use another scheme, which can be
expressed as follows:

yOR ¼minð1;
Xn

i ¼ 1

yand iÞ ð16Þ

(15) is very inconvenient to be implemented in the current-mode
technique. The term after the coma can be either negative or
positive when being compared with 0. Negative currents require
much more complex circuits and therefore this expression must
be transformed to avoid such a situation. The same result we
obtain using the following formula:

yand i ¼maxð1; xiþwiÞ�1 ð17Þ

In this case we always compare only positive signals. Now the
max function always returns the signal that is greater or equal to
1 and therefore subtraction of 1 in this equation never makes the
output signal to be negative. Introducing new binary variables sai

and sOR, defined as

sai ¼
1 for xiþwi41

0 otherwise
and sOR ¼

1 for
Xn

i ¼ 1

yand io1

0 otherwise

8><
>:

8><
>: ð18Þ

(17) can be rewritten as

yand i ¼ saiðxiþwi�1Þ ð19Þ

while (14) reads as follows:

yOR ¼ sOR

Xn

i ¼ 1

saiðxiþwi�1ÞþsOR � 1 ð20Þ

(20) can be now much easier implemented using current-mode
circuits. The variables sai and sOR can be obtained from simple
current-mode comparators realized as binary inverters. The
resulting OR neuron is shown in Fig. 7. The ref signal visualized
in this figure represents the value ‘‘1’’ in all formulas shown
above. This current allows for scaling up and down all signals in
this circuit, which is a very useful feature in case of systems
working under different conditions.

The topology of this circuit minimizes the number of the
intermediate current mirrors between the input and the output so
that it limits an overall error. Note that the and blocks in Fig. 7
perform the operation described by (17). The comparators are

used to compare the signals xi+wi signal with the reference
current (ref), instead of xi+wi�1 with 0. Then reference current is
then subtracted at the output of this block.

The important feature is that the input signals (xi+wi) are
directly transferred to comparators as well as to the output
branch, using the same multi-output current mirror. For this
reason, the mismatch error in each branch is always related to the
same input transistor and thus does not accumulate over
successive processing steps. For sufficiently large transistors and
large currents this error does not exceed 1–2%.

5.2. AND neuron

A very similar principle can be employed to construct the AND
neuron. The calculation scheme realized in such neuron is similar
to this of the OR neuron and is expressed as

yAND ¼ ðððyor 1 and yor 2Þ and yor 3Þand . . . and yor nÞ ð21Þ

where

yor i ¼minð1; xiþwiÞ ð22Þ

If at least one of the and functions returns 0 then all other and

functions also return 0, and therefore the relationship (21) can be
rewritten as follows:

yAND ¼max
�

0;
Xn

i ¼ 1

yor i�ðn�1Þ
�

ð23Þ

Introducing the binary variables soi and sAND defined as

soi ¼
1 for xiþwio1

0 otherwise
and sAND ¼

1 for
Xn

i ¼ 1

yoriþ14n

0 otherwise

8><
>:

8><
>:

ð24Þ

(22) can be rewritten in the following way:

yor i ¼ soiðxiþwiÞþsoi � 1 ð25Þ

while (23) reads as follows:

yAND ¼ sAND½
Xn

i ¼ 1

soiðxiþwiÞþ
Xn

i ¼ 1

soi � 1�nþ1� ð26Þ

Taking into account that

soi � 1�1¼�soi � 1 ð27Þ

1

sa1

sa1

sa2

as n

as n

ORs ORs

sa2

VDD

and

and

and

Comparator 11

or

x w1 1

x w2 2

x wn n

1

+wnxn

+w2x2

1

1

+x1 w1

yand1

yand2

yandn

yOR

Fig. 7. The proposed Łukasiewicz OR neuron.

R. D!ugosz, W. Pedrycz / Neurocomputing 73 (2010) 1222–1234 1227



Author's personal copy
ARTICLE IN PRESS

(26) can be simplified and rewritten as

yAND ¼ sAND½
Xn

i ¼ 1

soiðxiþwiÞ�
Xn

i ¼ 1

soi � 1þ1� ð28Þ

The resulting structure of the AND neuron is illustrated in Fig. 8.

5.3. Implementation of two-layer Łukasiewicz logic network

The next step is to determine the hardware structure of entire
two-layer network. Looking at expressions (14)–(16) and (21)–
(23), one can note that a series of both the or and the and

operations can be combined into a single function. Each layer in
the proposed Łukasiewicz network contains different neurons,
but at connections between both layers we have always the same
operations i.e. or–and–and–or as well as and–or–or–and for the
AND–OR and the OR–AND schemes respectively. This allows for
combining operations of the same type, using the same principle
like in Eqs. (16) and (23). As a result we obtain sequences: or–
and–or; and–or–and for the AND–OR and OR–AND network
schemes, respectively.

5.4. Realization of the AND–OR network

At the inputs of the second layers we have signals yAND j+wOR j,
where wOR j are the weights of the output OR neuron. The output
signal of the jth and function associated with the jth input in this
neuron can be calculated as follows:

yAND j ¼max½0;
Xn

i ¼ 1

yor i;j�nþ1

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
output of the AND neuron

þ wOR j�1|fflfflfflfflffl{zfflfflfflfflffl}
aggregation with the weight

�

¼maxð0;
Xn

i ¼ 1

yor i;j�nþwOR jÞ ð29Þ

or

yAND j ¼ sAND j½
Xn

i ¼ 1

soi;jðxiþwi;jÞ�
Xn

i ¼ 1

soi;j � 1þwOR j� ð30Þ

The output signal of the entire AND–OR network can be
determined combining (16) and (30):

yOR ¼minð1;
Xm
j ¼ 1

yAND jÞ ¼min
�

1;
Xm
j ¼ 1

sAND j½
Xn

i ¼ 1

soi;jðxiþwi;jÞ

�
Xn

i ¼ 1

soi;j � 1þwOR j�

�
ð31Þ

Using only logic variables, s, the output signal is expressed as follows:

yOR ¼ sOR

Xm

j ¼ 1

sAND j½
Xn

i ¼ 1

soi;jðxiþwi;jÞ�
Xn

i ¼ 1

soi;j � 1þwOR j�þsOR � 1

ð32Þ

The variables, s, are determined by comparators used on the and and
the or layers in the network, the m parameter is the number of
neurons in the network, while the n parameter is the number of the
network inputs. To facilitate hardware implementation let us rewrite
(32) in the following fashion:

yOR ¼
Xm

j ¼ 1

Xn

i ¼ 1

sORsAND jsoi;jðxiþwi;jÞ�
Xm

j ¼ 1

Xn

i ¼ 1

sORsAND jsoi;j1

þ
Xm
j ¼ 1

sORsAND jwOR jþsOR � 1 ð33Þ

where

sAND j ¼
1 for

Xn

i ¼ 1

soi;jðxiþwi;jÞþwOR j4
Xn

i ¼ 1

soi;j � 1

0 otherwise

8><
>:

sOR ¼
1 for

Xm

j ¼ 1

yAND jo
Xn

i ¼ 1

Xm
j ¼ 1

soi;jsAND j � 1

0 otherwise

8><
>: ð34Þ

The structure of the resultant AND–OR network is shown in Fig. 9.
Products of particular logic variables, sOR � sAND � sor and sOR � sAND are
calculated using standard digital 2-input AND gates. The important
advantage of this realization is that all analog signals, i.e. xi+wi,j, wj

n

i=1

so1

so1

so2

so2

son

son
so1 so2 son

SWn3

VDD

Comparator

or

or

or

and

1

N
ex

t l
ay

er
 o

f 
ne

ur
on

s

x w1 1

x w2 2

x wn n

+wnxn

+w2

1so

yAND

yor n

yor2

yor1
yor1

+w1x1

yor2

yor n

x2

1
1

1 SW11

i

SW12

SW13 SW23

Fig. 8. The proposed Łukasiewicz AND neuron.

R. D!ugosz, W. Pedrycz / Neurocomputing 73 (2010) 1222–12341228



Author's personal copy
ARTICLE IN PRESS

and the reference currents represented by 1, are copied at the
network output using only single current mirrors and single
switches, which are controlled by the digital AND gates. As a
result, the precision of this circuit is approximately equal to the
precision of a single current mirror, which is one of the main
advantages of the proposed solution.

The input signals x as well as the weights w are always copied
using only PMOS-type current mirrors, while the reference
currents ref always using only the NMOS-type mirrors i.e. always
under the same conditions.

Some disadvantage of this implementation, in comparison with
the circuit shown in Fig. 4, is the necessity of using digital
elements, which increase complexity of the circuit. This problem is
not very essential though, since the number of these gates,
n � (m+1), is not very large and typically does not exceed several
dozen to several hundreds. As a result, the chip area does not
increase significantly, since transistors in these gates are designed
in such a way so that they exhibit minimal sizes, in contrary to

transistors used in analog signal paths. Each of the input pairs
xi+wi,j is copied 4 times (5 transistors), while each of the wOR j

weights is copied 3 times (4 transistors). Three (two in case of wOR

signals) of these copies are provided to particular layers in the
network, while the 4th (3rd) copy at the network output. The
number of transistors in analog signal paths, excluding switches
realized as transmission gates, approximately equals 3 �m � (3n+1).
In comparison with transistors used in digital elements, these
transistors have much larger sizes. As a result, the digital part of
the chip occupies only some fraction of the total chip area.

5.5. OR–AND network

At the inputs of the output AND neuron we have the signals
yORj coming from the first layer. Taking into account the principle
that several or operations can be combined into one, the yORj

signals already contain weights of the AND neuron, wANDj. These

1

CMP

+w1,11x
+w1,11x +w1,11x +w1,11x +w1,11x

+w1,22x
+w1,22x +w1,22x +w1,22x +w1,22x

+w1,nx n

+w1,nx n
+w1,nx n

+w1,nx n

+wm1x ,1

+wnx nm,

+wnx nm,

s 1,1o

s 1,2o

+wm1x ,1
som,1

som,n

s
OR

som,1

som,n

s 1,o n

s 1,1o

+w1,nx n

+wm1x ,1 +wm1x ,1

+wnx nm,
+wnx nm,

soa ,11

soa ,21

soam,1

soam,n m,nsoao

,1 nsoao

,21soao

,11soao

saom

sao1

s
OR

saom

sao1

sao1

saom

soj,2

soj,n

soj,1

j,n

j,2

j,1

j,2

j,n

CMP

1

s 1,2oCMP

1

CMP

1

CMP

1

CMP

1

CMP

CMP

1 1 1

1

1 1 1

1

OR1w 1OR
w 1OR

w

mOR
w

mOR
wmOR

wmOR
w

m,1soao

s 1,o n
soa ,1 n

s
AND1

s
ANDm

y 1AND

mAND
y

mAND
s

1AND
s

1 1 1

1

s
OR

s
ANDm

2AND
s

AND1s
js

AND

j,1soao

ij,oaos

ij,oaos

y
OR

s
OR

s 1,1o
s 1,o n

som,1som,n

1

1

1

1

1 1 1

1
soa

s

soa

soao

soao

1

1OR
w

oa
sao2

Fig. 9. The proposed analog current-mode Łukasiewicz AND–OR network.

R. D!ugosz, W. Pedrycz / Neurocomputing 73 (2010) 1222–1234 1229



Author's personal copy
ARTICLE IN PRESS

signals are described as follows:

yOR j ¼ sOR j

�Xn

i ¼ 1

sai;jðxiþwi;j�1ÞþwAND j

�
þsOR j � 1 ð35Þ

Using (23) and (35), the output of the entire OR–AND network can
be described as follows:

yAND ¼max
�

0;
Xm

j ¼ 1

�
sOR j

�Xn

i ¼ 1

sai;jðxiþwi;j�1ÞþwAND j

�
þsOR j � 1

�
�ðm�1Þ

�

ð36Þ

Using (26) we can rewrite the above expression as follows:

yAND ¼ sAND½
Xm
j ¼ 1

�
sOR j

�Xn

i ¼ 1

sai;jðxiþwi;j�1ÞþwAND j

�
þsOR j � 1

�
�ðm�1Þ�

ð37Þ

Finally, we obtain:

yAND ¼
Xm

j ¼ 1

Xn

i ¼ 1

sANDsOR jsai;jðxiþwi;j�1Þþ
Xm

j ¼ 1

sANDsOR jwAND j

þ
Xm

j ¼ 1

sANDsOR j � 1�sANDðm�1Þ ð38Þ

which using (27) can be rewritten as follows:

yAND ¼
Xm

j ¼ 1

Xn

i ¼ 1

sANDsOR jsai;jðxiþwi;j�1Þþ
Xm

j ¼ 1

sANDsOR jwAND j

�
Xm

j ¼ 1

sANDsOR j � 1þsAND1 ð39Þ

aoa

CMP

CMP

CMP

CMP

CMP

CMP

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

+w1,11x
+w1,11x +w1,11x +w1,11x +w1,11x

+w1,22x
+w1,22x +w1,22x +w1,22x +w1,22x

+w1,nx n

+w1,nx n +w1,nx n +w1,nx n

+wm1x ,1

+wnx nm,

+wnx nm,

s 1,1a

s 1,2a

s 1,a n

+wm1x ,1
sam,1

sam,n

s
OR1

s
AND

sam,1

sam,n

s 1,a n

s 1,2a

s 1,1a

1 1 1 1

+w1,nx n

CMP

+wm1x ,1 +wm1x ,1

+wnx nm,
+wnx nm,

sao ,11

sao ,21

sao ,1 n

saom,1

saom,n m,nsaoa

m,1saoa

,1 nsaoa

,21saoa

,11saoa

soam

soa2

soa1

s
ORm

s
OR2

s
OR1

s
AND

s
ORm

soam

CMP

s
ORm

s
OR1

soa1

soa1

soam

ANDmw
ANDmw

ANDmw

ANDmw

AND1w

AND1w
AND1w

AND1w

s
OR1

s
ORm

s
ORj s

AND

sa j,2

sa j,n

sa j,1

j,n

j,2

j,1

j,1

j,2

j,n

soa1
soam

soam soa1

y
AND

y
ORm

y
OR1

s
AND

1

1

1

1

1

1

1

1

1 1 1

1 1 1

1

1

1

1

sao

sao

sao
saoa

saoa

s

Fig. 10. The proposed analog Łukasiewicz OR–AND network.

R. D!ugosz, W. Pedrycz / Neurocomputing 73 (2010) 1222–12341230



Author's personal copy
ARTICLE IN PRESS

In this case, the logic variables, sORj and sAND shown in (39) are
computed as follows:

sORj ¼
1 for

Xn

i ¼ 1

sai;jðxiþwi;j�1ÞþwANDjo1

0 otherwise

8><
>:

sAND ¼
1 for

Xm

j ¼ 1

yORjþ14m

0 otherwise

8><
>: ð40Þ

The resulting structure of the OR–AND network is given in Fig. 10.

5.6. Verification of the proposed circuits

Illustrative simulation results obtained for the logic OR and
AND neurons implemented using the proposed approach are
shown in Figs. 11 and 12, respectively. In the completed
simulations, both neurons have 4 inputs (x) and 4 weights (w).
For the ease of visualization, the values of x signals are kept the
same. The same holds for the input weight signals w. The upper
plot in both figures presents the input and the output analog
currents. Two example cycles are shown for better illustration.
The first cycle starts at 200 ns and ends at 1900 ns, while the
second one starts at 2100 ns and ends at 3100 ns.

In Fig. 11, in the first cycle, all the x and the w input signals
have equal values. These signals start rising at 1200 ns. At this
time the outputs of the comparators, sai, in the first layer i.e. in the
and operations in Fig. 7 assume logical ‘‘0’’, since the particular

sums xi+wi are smaller than the reference current Iref, which plays
a role of the ‘‘1’’ signal in the equations shown above. As a result,
the switches SW1 and SW2 are opened and the corresponding
yand i signals are zero, which is in the agreement with (15). When
the x and the w signals become equal to 0.5 � Iref, the sai signals
become logical ‘‘1’’ and the yand i signals follow the values
xi+wi� Iref, as given by expression (19). In the period between
1300 ns and c.1330 ns the sum of all the yand i signals is less than
the Iref current, resulting in the sOR signal to be equal to logical ‘‘1’’,
as given by (18), and the neuron output signal, yOR, follows the
sum of the four yand i signals, as given by (20). At the point A, all
yand i signals become equal to 0.25 � Iref, the yOR signal which is
sum of the yand i signals becomes equal to Iref, and the comparator
output at the second layer sOR becomes logical ‘‘0’’. As a result, the
neuron output yOR is switched directly to the reference signal,
while the switch controlled by the sOR signal is in this period
opened. This is the reason why the yand i signals become zero. This
is worth noticing that each and operation provides two copies of
the yand i signal and only the copy that flows to the neuron output
is zeroed. The copy that is provided to the comparator input in the
or operation is still nonzero, as expected.

In the second cycle the x signals differs from w signals. In the
time moment 2300 ns the x signal reaches the maximum value
and equals Iref. Since the neuron weights equal zero in this time
therefore both the yand i signals and the neuron output are zero.
This situation corresponds with the situation shown in Fig. 3
(the left diagram). In the time moment 2400 ns the weights start
rising and when their values become 200 nA and the sai signals
become logical ‘‘1’’, the yand i signals start following the values
xi+wi� Iref.

0

200

400

600

800

1000

1000
Time [us]

I [
nA

]

I_ref

x , w x

w

y _OR

y _OR

xw

y _and i y_and i

A
A

0

200

400

600

800

1000

Time [us]

V 
[m

A
]

input of the 
comparator

in the or operation

s _andi

s _OR

s_andi

s _OR

-1
-0.5

0
0.5

1
1.5

2
2.5

Time [us]

er
ro

r [
%

]

full scale signals

small signalscomparator delay

comparator delay

1200 1400 1600 1800 2200 2400 2600 2800 3000

1000 1200 1400 1600 1800 2200 2400 2600 2800 3000

1000 1200 1400 1600 1800 2200 2400 2600 2800 3000

Fig. 11. Simulation results for OR neuron: (top) input x, weight w and the output signals, (middle) operation of the comparator (bottom) error between theoretical and the

simulated cases.

R. D!ugosz, W. Pedrycz / Neurocomputing 73 (2010) 1222–1234 1231



Author's personal copy
ARTICLE IN PRESS

The second plot in Fig. 11 illustrates an operation of the
comparators both in the first and in the second layer of the OR
neuron.

A very important aspect here concerns a precision of the
designed circuits, which has been evaluated by comparing the
signals obtained in transistor level simulations with theoretical
values obtained from (4) and (6) for the same inputs. The third
plot in Fig. 11 presents the percentage error for the OR neuron.
The error is the highest for small signals. It is also quite high in
periods, in which comparators have to change the state which
introduces some delay. For the full scale input signals the error is
well below 0.2%, although this error can be potentially increased
by 1–2% owing to the mismatch effect described above.

The similar results, Fig. 12, have been obtained for the AND
neuron. For small values of the xi+wi signals being lower than the
Iref current the comparators outputs, soi, at the first layer i.e. in the
or operations are logical ‘‘1’’ (Eq. (24)). The switches SWi1, SWi2,
SWi3 are closed and the yori signals follow the signals xi+wi. In the
first cycle that starts at 1200 ns the neuron output signal, yAND,
starts rising when both the x and the w signals, which are equal in
this period, equal 0.375 � Iref. For this given value the first term in
(28) i.e., the sum of the soi?(xi+wi) signals equals 3000 nA, the
second term equals 4000 nA and the total signal in brackets equals
0 ns. In the second cycle the x and the w signals are different. The x

signal start rising as first and at 2300 ns reaches the value of
900 nA. As a result the yAND signal becomes equal to
4 �900�4000+1000 [nA]=600 nA. Further increase of the yAND

signal starts when the wi signals start rising at 2400 ns. When the
xi+wi signals become larger than Iref current, the variables soi

become logical ‘‘0’’ and the switches SWi1–SWi3 in particular or

operations are opened. For all switches being opened only the
reference current flows to the output of the neuron.

In the AND neuron, the error calculated in relation to the full
scale signal is at the level of 0.25%—the middle plot. The third plot
presents the error in case of reduced values of the input signals,
namely for Iref=100 and 10 nA. We note that although the error
increases for smaller signals, this increase is relatively limited.

One of the key objectives is to reduce power dissipation of
electronic circuits to enable their effective usage in ultra low
power portable devices [14]. The ability of the circuits to work
with signals which vary in a large range of values is one of the
paramount features of our design. In this type of circuits the power
dissipation almost linearly depends on the values of the input
signals. For the input signals varying in the range up to 1mA the
average power dissipation equals to c.a. 10mW, while for the range
of 10 nA the power dissipation becomes reduced to 95 nW only.

The results presented in this study are reported for the CMOS
0.18mm process and the supply voltage of 1.2 V. One could note that
these circuits operate properly between 1.8 and 0.9 V of the supply.
In newer CMOS technologies, the supply voltage could be further
reduced further facilitating the reduction of power dissipation.

The networks shown in Figs. 9 and 10 composed of 4–6
neurons and with 4 inputs have been verified in Hspice
simulations in the similar way like single AND and OR neurons.
The results concerning the circuit precision are comparable.

One of the important questions being formed in case of the
realization of integrated systems is the chip area, which has a
significant influence on the cost of the device. Taking into account
other chips previously realized be the authors in the CMOS
0.18mm technology, including current-mode circuits, e.g. [5,13],

0
200
400
600
800

1000
1200

1000
Time [us]

I [
nA

]

ref

x, w
x w

y_AND

y_AND
xw

-1

0

1

2

Time [us]

er
ro

r [
%

]

full scale signals

small signals

comparator delay

-1
0
1
2
3
4
5

10
Time [ms]

er
ro

r [
%

]

Iref=10nA

Iref=100nAIref=100nA

Iref=10nA

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

12 14 16 18 20 22 24 26 28 30

Fig. 12. Simulation results for the AND neuron: (top) input and output signals for the Iref current (the ‘‘1’’ signal) of 1mA, (middle) resultant error for this current, (bottom)

errors for Iref of 100 and 10 nA.

R. D!ugosz, W. Pedrycz / Neurocomputing 73 (2010) 1222–12341232



Author's personal copy
ARTICLE IN PRESS

the chip area of the proposed circuit has been evaluated as a
function of the number of neurons (m) and the number of inputs
(n) in the network. The results are shown in Fig. 13.

The presented results have been obtained on the basis of the
number of transistors in the network, as a function of the n and
the m variables. Since the digital blocks require only small
transistors, while the analog blocks use larger transistor to
minimize the mismatch problem described above, both types of
transistors have been counted separately and multiplied by areas
for particular types of transistors. Some area has been assumed
for the connecting paths between particular blocks in the chip.
Finally, the obtained areas have been multiplied by a correction
factor, which has been calculated on the basis of the projects
realized earlier by the authors. The presented areas do not include
the adaptation mechanism, which is not within the scope of this
paper. Such mechanism has been designed by the authors in
another project i.e. the analog Kohonen neural network [5,13] and
its area in CMOS 0.18mm technology equals 1000mm2. The
number of such blocks in the network proposed in this paper is
equal to n �m. Fig. 13 shows that even in case of very advanced
system with 20 neurons and 10 inputs the chip area will be
relatively small and equal to c. 0.15 mm2 without the adaptation
mechanism or c. 0.35 mm2 with the adaptation mechanism.

This is also worth noting that all the xi+wi signals are always
copied to comparators and to the network output using the PMOS
current mirrors, while the reference current Iref always using the
NMOS mirrors. If an offset in comparators occurs and this offset
has a similar value for all comparators, which is possible in a
careful layout design, it can be compensated by adjustment of the
value of reference current, which is an additional advantage here.

6. Conclusions

In this study, we have proposed the new ultra low power
circuit realization of or and the and Łukasiewicz operators used as
logic connectives in OR and AND neurons and neural networks. In
the proposed circuits the error reduction for small signals are
achieved by eliminating a chain of current mirrors between the
input and the output of the neurons. The simulation results show
that the circuits can operate with currents that are at the level of

single nAmps, which is an attractive feature especially for very
low power portable devices.

In the present work, we have not described the adaptation
mechanism realized at the transistor level that would be suitable
for the proposed network. The implementation of such mechan-
ism becomes the problem by itself. We have proposed the
mechanism of this nature earlier when dealing with analog
Kohonen self organized feature maps [5,13]. After some modifica-
tions, this mechanism can be adopted for the proposed network.

The implementation of the bias term, as described in Section 2,
has not been discussed here but it can be easily realized in
hardware, by simple addition of a single branch at the output of
each neuron in the network.

References

[1] C.-Y. Chen, Y.-T. Hsieh, B.-D. Liu, Circuit implementation of linguistic-hedge
fuzzy logic controller in current-mode approach, IEEE Transactions on Fuzzy
Systems 11 (5) (2003) 624–646.

[2] M. Conti, G.D. Betta, S. Orcioni, G. Soncini, C. Turchetti, N. Zorzi, Test structure
for mismatch characterization of MOS transistors in subthreshold regime,
IEEE International Conference on Microelectronic Test Structures 10 (1997)
173–178.

[3] J.A. Croon, M. Rosmeulen, S. Decoutere, W. Sansen, H.E. Maes, An Easy-to-Use
mismatch model for the MOS transistor, IEEE Journal of Solid-State Circuits
37 (8) (2002) 1056–1064.

[4] E. Farshidi, A low-power current-mode defuzzifier for fuzzy logic controllers,
International Conference on Signals, Circuits and Systems (SCS) (2008) 1–4.

[5] R. D"ugosz, T. Talaska, J. Dalecki, R. Wojtyna, Experimental Kohonen neural
network implemented in CMOS 0.18mm technology, in: 15th International
Conference Mixed Design of Integrated Circuits and Systems (MIXDES),
Poznan, Poland, 2008, pp. 243–248.

[6] J. Jang, C. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing, Prentice Hall,
Upper Saddle River, NJ, 1997.

[7] J.W. Mills, Area-efficient implication circuits for very dense Lukasiewicz logic
arrays, International Symposium on Multiple-Valued Logic, 1992, pp. 291–
298.

[8] A. Morgul, T. Temel, Current-mode level restoration: circuit for multi-valued
logic, Electronics Letters 41 (5) (2005) 230–231.

[9] W. Pedrycz, Fuzzy neural networks and neurocomputations, Fuzzy Sets and
Systems 56 (1993) 1–28.

[10] W. Pedrycz, Heterogeneous fuzzy logic networks: fundamentals and devel-
opment studies, IEEE Transactions on Neural Networks 15 (2004) 1466–1481.

[11] W. Pedrycz, A. Rocha, Knowledge-based neural networks, IEEE Transactions
on Fuzzy Systems 1 (1993) 254–266.

[12] A. Rodriguez-Vazquez, R. Navas, M. Delgado-Restituto, F. Vidal-Verdu, A
modular programmable CMOS analog fuzzy controller chip, IEEE Transactions

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0
Neurons

A
 [m

m
2 ]

n=1

n=10

2 4 6 8 10 12 14 16 18 20

Fig. 13. Evaluation of the chip area as a function of the number of neurons (m) and the number of the network inputs (n) in case of CMOS 0.18mm technology for the OR–

AND network. The results for the AND–OR network are very similar.

R. D!ugosz, W. Pedrycz / Neurocomputing 73 (2010) 1222–1234 1233



Author's personal copy
ARTICLE IN PRESS

on Circuits and Systems II: Analog and Digital Signal Processing 46 (3) (1999)
251–265.

[13] T. Talaśka, R. D"ugosz, W. Pedrycz, Adaptive weight change mechanism for
Kohonens’s neural network implemented in CMOS 0.18mm technology, in:
11th European Symposium on Artificial Neural Networks, Bruges, Belgium,
2007, pp. 151–156.

[14] J.X. Xu, C. Xue, C.C. Hang, K.V. Palem, A fuzzy control chip based on
probabilistic CMOS technology, IEEE International Conference on Fuzzy
Systems FUZZ-IEEE (2008) 174–179.

[15] T. Yamakawa, T. Miki, The current mode fuzzy logic integrated circuits
fabricated by standard CMOS process, IEEE Transactions on Computers C 35
(2) (1986) 161–167.

Rafa$ D$ugosz is currently with the Swiss Federal
Institute of Technology in Lausanne (EPFL) in Switzer-
land, Institute of Microtechnology (IMT). He received
M.Sc. in automatic and robotic in 1996 and Ph.D. in
telecommunication in 2004 (with honours), both from
Poznań University of Technology (PUT) in Poland. From
1996 to 2001 he was with the Institute of Electronics
and Telecommunication at PUT. From 2001 he is with
Department of Computer Science and Management at
PUT. He is the fellow of several scientific fellowships
from Foundation for Polish Science in Poland (for
young scientists and for young doctors) and from
European funds (Marie Curie Outgoing International

Fellowship). Within these fellowships between 2005 and 2008 he was with
Department of Electrical and Computer Engineering at the University of Alberta in
Canada and since 2006 he holds the scientist position in EPFL. His main research

areas are ultra low power reconfigurable analog and mixed analog-digital
integrated circuits such as analog finite impulse response filters, analog-to-digital
converters and neural networks. Dr. D"ugosz has been involved in numerous
projects granted by EU and Polish Government. He has published over 80 research
papers, including several book chapters.

Witold Pedrycz (M’88-SM’90-F’99) received the M.Sc.,
and Ph.D., D.Sci. all from the Silesian University of
Technology, Gliwice, Poland. He is a Professor and
Canada Research Chair (CRC) in Computational Intelli-
gence in the Department of Electrical and Computer
Engineering, University of Alberta, Edmonton, Canada.
He is also with the Polish Academy of Sciences,
Systems Research Institute, Warsaw, Poland.

His research interests encompass computational
intelligence, fuzzy modeling, knowledge discovery
and data mining, fuzzy control including fuzzy con-
trollers, pattern recognition, knowledge-based neural
networks, granular and relational computing, and

Software Engineering. He has published numerous papers in these areas. He is
also an author of 12 research monographs. Witold Pedrycz has been a member of
numerous program committees of IEEE conferences in the area of fuzzy sets and
neurocomputing. He serves as Editor-in-Chief of IEEE Transactions on Systems
Man and Cybernetics-part A and Associate Editor of IEEE Transactions on Fuzzy
Systems. He is also an Editor-in-Chief of Information Sciences. Dr. Pedrycz is a
recipient of the prestigious Norbert Wiener award from the IEEE Society of
Systems, Man, and Cybernetics and an IEEE Canada Silver Medal in Computer
Engineering.

R. D!ugosz, W. Pedrycz / Neurocomputing 73 (2010) 1222–12341234


