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Abstract—This paper presents a complementary metal–oxide–
semiconductor (CMOS) implementation of a conscience mecha-
nism used to improve the effectiveness of learning in the winner-
takes-all (WTA) artificial neural networks (ANNs) realized at the
transistor level. This mechanism makes it possible to eliminate the
effect of the so-called “dead neurons,” which do not take part in the
learning phase competition. These neurons usually have a detri-
mental effect on the network performance, increasing the quanti-
zation error. The proposed mechanism comes as part of the analog
implementation of the WTA neural networks (NNs) designed for
applications to ultralow power portable diagnostic devices for on-
line analysis of ECG biomedical signals. The study presents Matlab
simulations of the network’s model, discusses postlayout circuit
level simulations and includes results of measurement completed
for the physical realization of the circuit.

Index Terms—Analog circuits, complementary metal–oxide–
semiconductor (CMOS) implementation, conscience mechanism,
low energy consumption, parallel data processing, self-organizing
map (SOM), winner-takes-all (WTA) neural networks.

I. INTRODUCTION

H ARDWARE implementations of artificial neural net-
works in an analog or analog-digital application specific

integrated circuit (ASIC) form may sometimes lead to much
more power-economic and faster computational operations in
comparison to what becomes achievable in software imple-
mentations [13], [19]. The reduction of power consumption
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and increase in operation speed by several orders of magnitude
can be reached. Thus, achieved significant computing improve-
ments are mostly due to parallel data processing being realized
in such networks.

The low power consumption results from the use in some pro-
cessing tasks analog blocks (modules) that offer a much lower
circuit complexity than their digital counterparts.

On the other hand, designing analog or analog-digital net-
works implemented as ASICs is extremely complex, as it must
be usually done in a full-custom style. This is one of the main
reasons why hardware implementations are still quite rare in
comparison with the existing software implementations of
neural networks. Another reason is a common opinion that
commercial digital processors are fast enough to realize neural
networks thus reducing the usefulness of any specialized hard-
ware implementation. Consequently, the research on this topic
has been slowed down, resulting in a situation, in which the
main hardware implementations of neural networks are those
reported many years ago [1]–[9].

While there is some rationale behind the arguments presented
above, we are currently witnessing new developments calling
for a careful reexamination of the views concerning the useful-
ness of hardware realizations of neural networks. Indisputably,
the recent development of electronic circuits in the very first
place targets those applications in which ultralow energy con-
sumption is highly relevant. In wireless sensor networks, for ex-
ample, substantial effort has been made to develop devices that
are self-sufficient with regard to energy supply. This is a class of
circuits, in which analog artificial neural networks (ANNs) that
are much more power efficient than their software counterparts
may find a wide range of applications.

We have been working on the hardware implementation of
ANNs in an ASIC form for some time now; cf., [10]–[13],
[27], and [28]. Our particular interest is in self-organizing
maps (SOMs) being trained using the learning vector quan-
tization (LVQ) rule [14], [29]. We have recently designed an
experimental power-economic analog winner-takes-all (WTA)
network that can be trained on silicon. The experimental mea-
surements of the fabricated prototype along with comparative
simulation studies carried out in software (C++) demonstrate
that analog networks of this type are highly efficient. For
instance, 100 neurons operating in parallel can be even several
dozen times faster than a similar network being implemented
using a PC while dissipating only 1% of power required by
a typical PC [13]. The intended application of such networks
could be in an online analysis of electrocardiography (ECG)
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and electromyography (EMG) biomedical signals in power-ef-
ficient portable diagnostic devices forming a part of wireless
body sensor networks [20], [21].

One of the problems in the WTA networks are so-called “dead
neurons” i.e., the neurons the weights of which do not change
during the learning process. The common reason for that could
be improperly selected initial values of the weights (connec-
tions) [12].

As regards classification problems, dead neurons reduce the
number of classes that could be discriminated. Moreover, they
increase a mapping (quantization) error of the network. For this
reason, reducing or eliminating these neurons becomes an im-
portant design objective. One of the efficient methods of elimi-
nating the dead neurons is the so-called conscience mechanism
[15]–[18]. Its role is to give all neurons a chance to win the com-
petition and participate in the weight adaptation process.

This study focuses on the conscience mechanism imple-
mented on silicon together with the overall neural network by
making use of the ASIC style of design. The proposed realiza-
tion is based on the utilization of analog counters studied by
Talaśka et al. [10]. The paper presents a design methodology of
the conscience mechanism completed at three different levels.
The system level, realized by using the software model of the
network, allows for a determination of the optimal parameters
of the conscience mechanism for a given number of neurons.
At the second level, the postlayout simulations allow for the
optimization of the circuit. Here the internal signals, like out-
puts of the analog counters, are available for monitoring. In
the presented implementation of the WTA NN, these signals
cannot be directly observed from outside the chip. The mea-
surements completed at the third level are necessary to verify
all assumptions made at the previous levels.

Some early hardware developments of Kohonen self-orga-
nized feature maps (SOFMs) are reported in [24]–[26]. They
are based on different signal processing techniques, i.e., digital,
analog, and mixed analog-digital ones.

The fully digital Kohonen network implemented in comple-
mentary metal–oxide–semiconductor (CMOS) 0.5- m process
has been presented in [24]. The main problem in this realiza-
tion was a very large chip area that made the implementation
of large networks fairly impractical. Each processing element
(PE) that represents a single neuron of the map contains about
10 000 transistors and occupies an area of 4 mm . Even if, owing
to newer technologies, this circuit is scaled down, the area of a
single neuron at the level of mm leads to substantial difficulty
in the implementation of more than several dozen of neurons on
a single chip. A single prototype chip contains four PEs, while
the larger map (KARN processor) is realized by the parallel ar-
rangement of many KARN chips.

Another example of the hardware realization of such a net-
work has been reported in [25]. In this solution, some modules
of the overall architecture like the Euclidean distance calcula-
tion block (EDC) and the WTA block are implemented as analog
components, while the adaptation process is realized by the use
of digital technology. The analog memory is implemented using
digital counters that can count in both directions depending on
whether an input data is greater than a neuron’s weight . The
adaptation mechanism used in this solution is different from the

“typical” Kohonen’s algorithm. The learning rate is kept fixed
and its value results directly from the assumed resolution of the
counter (5 bits in this particular case). In addition, the adaptation
process does not depend on exact values of and but only on
the value of the sign function , always updating the
counter value by .

An interesting network implemented by using current-mode
analog circuits has been reported in [26]. In this approach, the
distance between currents representing input data and neuron
weights is calculated using Manhattan (Hamming) metric, as
this metric is easier to implement in hardware than the Euclidean
one. All main operations, including the adaptation, are carried
out in an analog way. In comparison to the solutions described
above, this approach is much more chip area efficient, even
though this network has been implemented in the older CMOS
2- m technology. This demonstrates that the analog technique
is much more suitable in the implementation of neural networks
than its digital counterpart. One of the disadvantages in this
analog solution is a complex refreshing system of the analog
memory. The memory cells are refreshed sequentially using a
single current-mode successive approximation analog-to-digital
converter (SAR ADC). As a result, the period of the overall re-
freshment cycle depends on the number of memory cells. An
additional disadvantage is that the refreshing mechanism always
rounds weights stored in the analog memory to the nearest dis-
crete values.

The number of levels of the reference signal depends on
the resolution of the ADC, while the accuracy of the learning
process additionally depends on the linearity of the input–output
characteristics of this ADC.

The WTA network reported in this paper uses both the analog
current-mode technique and parallel data processing. As a re-
sult, the network occupies an area that is two orders of magni-
tude smaller than the one being used by its digital counterpart.
The adaptation process is completed at the analog side. In com-
parison to analog and mixed implementations described in this
section, the proposed network dissipates only a small fraction of
the power dissipated by these networks while achieving a much
higher data rate.

It is important to stress that in our network, trained in accor-
dance with the LVQ rule, we do not use the neighborhood mech-
anism, as it is presented in the solutions described in [24]–[26],
but considering the criterion of the hardware complexity alone,
the comparison of this nature still remains justified, since the
conscience mechanism requires an additional hardware. The
learning rule used in our WTA network may be considered as
a special case of the algorithms used in the winner-takes-most
(WTM) SOM [31], for the neighborhood radius equal to zero.
The use of the conscience mechanism allowed us to avoid imple-
menting the neighborhood mechanism on this prototype chip,
although we are currently working on such mechanism [32],
[33] that is to be included in the next prototype chip.

This paper is organized as follows. An overview of existing
conscience algorithms is presented in Section II. Section III
treats on the proposed conscience mechanism realized by means
of analog circuits. A brief overview of other components of the
prototype network is also presented in this section. A verifica-
tion of the conscience mechanism including software simula-
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tions, postlayout circuit level simulations, and experimental re-
sults of the designed neural network in CMOS technology are
presented in Section IV. Conclusions are covered in Section V.

II. CONSCIENCE MECHANISM IN NEURAL

NETWORKS—A REVIEW

As already mentioned, one of the important problems of the
WTA network are dead neurons. This problem can be signif-
icantly reduced or even completely eliminated by applying a
conscience mechanism. In the literature, one can find several
realizations of this mechanism [16]–[18]. One of the existing
implementations is the algorithm described by Ahalt et al. [16]
that takes advantage of frequency sensitive competitive learning
(FSCL). In this approach, each neuron includes an individual
counter that counts the number of times a given neuron wins
during the overall training process. As a result, the value of the
Euclidean distance used here as the measure of dissimilarity be-
tween the input data and the weights of the winning neuron is
increased. This is done by multiplying an original distance by
a value that is proportional to the number of times this neuron
has been declared as a winner. This modification decreases the
winning likelihood of this neuron in the next iterations, thus al-
lowing other neurons in the network to compete and win. The
modified distance can be described as follows:

(1)

where is a weight vector of the winning neuron, is a
learning vector, the term is a square of the Euclidean
distance that serves as a measure of resemblance between the

and the , is an artificially increased distance
between and , is the number of wins of a winning
th neuron, while is the gain factor that controls strength of

the conscience mechanism. The weights’ adaptation process of
the winning neuron in the th presentation of an input pattern is
realized according to

(2)

Here, relates to the th winning neuron and is expressed in
the form

if
otherwise.

(3)

Another solution for the realization of the conscience mecha-
nism has been proposed by De Sieno [18]. In the proposed dis-
tance modification, there is a variable associated with each
neuron in the network, which is a measure of the number of the
wins being calculated according to

(4)

where is a constant selected experimentally to be in the range
, is the output of the th neuron, which is equal

to 1 for a winning neuron and 0 otherwise. The weights of the
winning neuron are in this case expressed by

(5)

where is a learning rate, while in this case is calculated
according to

if
otherwise.

(6)
The term is expressed in the form

(7)

is a constant value. This value, reported in [18], is equal to 10,
while is the number of neurons in the network (the number of
outputs). For , this algorithm realizes the classic learning
rule used in the WTA network.

It is worth noting that at the beginning of the learning process
all variables are set to zero, which means that all variables
are equal to some positive values that depend upon the number
of neurons in the network. The values of increase nonlinearly
with the number of wins of the particular neurons. As shown
in (4), they never exceed a value of 1, approaching this value
asymptotically. Since the Euclidean distance (or its squared
value) can vary in-between 0 and a certain positive value that
depends on the input data range, therefore the terms on both
the left-hand side and the right-hand side of inequality (6) can
be either positive or negative.

The said nonlinearity of the variable makes De Sieno’s al-
gorithm better protected against the overflow as both sides of
(6) are bound to some, usually small values. On the other hand,
this algorithm is computationally more complex than the FSCL
method. Additionally, in the FSCL algorithm, in contrast to De
Sieno’s approach, the modified distance between training and
weight vectors is always positive. These conclusions are impor-
tant from the hardware implementation point of view as it will
be described in Section III.

III. IMPLEMENTATION OF THE PROPOSED

CONSCIENCE MECHANISM

The learning process in the WTA NN starts with generating
random weights for all neurons (network initialization) [12],
[22], [23]. At the next phase, the training process starts. At this
phase, the network is seeking for the winning neuron, whose
weight vector is the closest to the given learning vector. As a
measure of resemblance between the vectors, squared Euclidean
distance has been used. This allows for omitting the square root
operation, which contributes to the simplification of the circuit.
The winning th neuron adapts its weight vector in the following
way:

(8)

The weights associated with other neurons remain unchanged

(9)

The initial value of has been selected experimentally. The
value of this parameter decreases during the learning process.

A block diagram of the designed network is shown in Fig. 1.
It includes four key modules, which have been fabricated in
analog ASIC, as described in [10]–[13] and [27]. The Euclidean
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Fig. 1. Block diagram of the WTA neural network implemented by the authors. Signals � , � , and � are a part of the hardware realization; they are
represented by currents � , � , and � .

distance calculation (EDC) blocks determine the value of the
square of the Euclidean distances for the particular neurons. In
the designed network, the EDC block consists of three identical
channels, each containing the comparator, the subtracting cir-
cuit (SUB), and the squarer. The comparator compares the input
signals with the signal representing the neuron weight , and
generates two complementary logical signals that control the
SUB block as well as the adaptive weight change (AWC) mech-
anism. The SUB block calculates the absolute value of the dif-
ference between the signals and . Using the absolute value
allows us to use a simple one-quadrant squarer that simplifies
the overall EDC block. The binary-tree WTA block [34] identi-
fies the winning neuron, searching for the smallest current .
These currents are direct measures of the Euclidean distance.

The AWC mechanism updates the winning neuron’s weights.
Each of the AWC blocks presented in Fig. 1 consists of two
current-mode sample and hold (S&H) memory cells, not shown
for simplicity, that work alternately, and an individual control-
ling circuit. New data that occur at the AWC input—the term
“ ” in (8)—are summed with the previous value coming
from one of these cells and afterwards the result is stored in
the second cell. A potential problem with current leakage in
this memory occurs, but if the weights are updated, as long as
training continues, this leakage is compensated. Nevertheless,
the leakage significantly modifies the weights of dead neurons,
which are not updated. This has been modeled in our network
model as described later in the text, and shown in Fig. 6(c).

Once the adaptation has been completed, an external clock
switches over the control circuit, which makes the new weights’
values at the neuron’s output ready to be used at the next training
cycle.

All these blocks operate in the current mode, which means
that both the input training signals and the neuron weights are
represented by currents and all calculations in the network are
performed in the current domain. The current mode has been
chosen as it allows for an easy implementation of the summa-
tion, as particular signals may be simply added at junctions. This
helps avoiding the use of operational amplifiers, which usually
dissipate much larger power [19]. This approach significantly
simplifies the structure of the building blocks described above
as well as the overall network. More details on these functional
blocks are reported in [11]–[13] and [27]

Fig. 2. Block diagram of the proposed conscience mechanism realized with the
use of analog counters.

In this study, we concentrate on the conscience mechanism
(CONS), which has been also implemented as the part of the
network. The general idea of this mechanism is visualized in
Fig. 2. This approach takes into consideration the advantage of
the current-mode circuits mentioned above.

In this case, the distance between the weight and the training
vectors is made higher by adding a signal that is proportional to
the number of the wins

(10)

where distance , shown in Fig. 2 and described by
the term , is represented by the current , and

is a component that is proportional to the number of wins
of a given neuron. The coefficient is the conscience

gain factor, which allows us to control and optimize the learning
process by adjusting the strength of the conscience mechanism.

The proposed conscience mechanism is shown in Fig. 3[10].
It consists of three main components. One of them is the analog
counter (CNR), shown in Fig. 3(a). This block is controlled by
the ENt impulses that come from the temperature compensation
block (CTEMP), shown in Fig. 3(b). The CTEMP block is, in
turn, controlled by the input pulses (EN) arriving from the WTA
block. The ENt impulses for short periods of time open the cur-
rent source MP2 in the counter, which in consecutive iterations
charges the capacitor . After a series of zero voltage states
of the ENt signal, i.e., series of MP2 drain-current pulses that
charge the capacitor, the analog counter reaches an overflow
state and may be reset. This is realized by switching on the MN2
transistor controlled by the AND-gate output voltage. The point
is that the gate signal must be delayed in relation with the mo-
ment when the counter content crossed the overflow level, which
is a necessary condition to avoid instability of the counter. This
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Fig. 3. Main components of the proposed conscience mechanism: (a) an analog
counter (CNR), (b) a temperature compensation circuit (CTEMP), and (c) a dif-
ferential U-I converter.

is ensured by means of the NOT1 and NOT2 inverters and the
SW1 switch. The reset function may be activated only in case
when the ENBL control signal is equal to logical “1.”

The presented analog counter provides a flexible solution,
since its modulo can be easily controlled in a wide range, using
only a single voltage . Simulation results for the selected
values of voltage are shown in Fig. 4, where they concern
modulo 3 and 40.

It is worth mentioning, that we program modulo in such a way
to make the only rising up and to avoid resetting when
the CONS mechanism is active. To avoid unexpected reset, in
this phase, the ENBL signal is additionally equal to logical “0.”

One of the problems associated with the analog counter pre-
sented here is that the charge amount that flows to the capacitor

strongly depends on temperature due to variations of channel
resistance of the MP2 PMOS transistor. This means in practice
that operation of the conscience mechanism and the learning
process become dependent on temperature of the environment.
We have solved this problem by applying the CTEMP block,
which controls width of the ENt impulses, depending on the
variations of the temperature. The circuit realizes a similar prin-
ciple as the one used in analog counters. The channel resistance
of both the MP1 and MP2 transistors is the same over a wide
range of temperatures. When, for instance, the channel resis-
tance of the transistors decreases, due to temperature variations,
the charging process of the capacitor becomes faster, and
is reset after a shorter period of time. This in turn decreases the

Fig. 4. Illustration of the range flexibility of the analog counter used in the
conscience mechanism. Voltage � is regarded as a parameter: (a) counter
modulo 3, (b) counter modulo 40.

width of the ENt impulses and stabilizes the charge amount that
flows to the capacitor .

The voltage is stored on the capacitor and can be
treated as the measure of the number of wins related to a given
neuron. This voltage is then converted into current using
a differential U-I converter shown in Fig. 3(c). This current is
directly added to the EDC output current , according to

(11)

The converter consists of a differential transconductor (tran-
sistors M1, M2, M3, M4), a tail current (M5, M12) biasing the
differential pair M1–M2, two voltage attenuators, and an output
current mirror (CM) M15–M16. This mirror serves as a current
amplifier, which adjusts the U-I converter output current
to the level of currents delivered by the EDC blocks (see Fig. 1),
which represent the Euclidean distance , shown in
Fig. 2. One of the attenuators (M6, M7, M10, M13) delivers a
suitable voltage to gate of M2 and the other attenuator (M8,
M9, M11, M14) delivers the voltage to gate of M1. For a
small-signal operation of the transconductor, is linearly
related to , according to [28]

(12)

is a drain current of M5 (tail current of the M1–M2 pair) and
is a real-valued coefficient dependent on the aspect ratios of

M1 and M2. As can be seen from (12), the gain of the transcon-
ductor can be controlled by the current , which is dependent
on the control voltage .
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Fig. 5. Influence of the U-I circuit gain controlled by the � voltage on
the current � at the CONS mechanism output for: (a) � � ��� �,
(b) � � ��� �, and (c) another modulo and � � ��� �.

Finally, as shown in Fig. 5, the voltage controls the gain
of the overall U-I converter. The presented waveforms come
from HSPICE postlayout simulations.

The role of the left-hand side attenuator is to enable a wide
variation range of the input voltage for small variations
of , i.e., to ensure a small signal operation of the transcon-
ductor. The attenuator can work linearly with a small negative
gain coefficient, if the circuit is supplied by a sufficiently high

voltage difference. This, unfortunately, is in conflict
with the required low-power consumption of the converter. In
our case, a low supply voltage option has been applied to min-
imize power consumption, which results in a nonlinear relation
between and . This nonlinearity is the main reason
for nonlinear character of the converter transfer function visible
in Fig. 5(c).

The ASIC design affects the properties and effectiveness
of the obtained conscience mechanism realized on silicon. Of
some importance also is the realization mode (analog, digital,
or mixed) as well as the operation mode of the applied signal

processing circuits. The last issue is essential in the case of
analog circuits. As mentioned above, in current-mode circuits,
it is extremely easy to implement summation operations as
addition can be carried out at a single node. Multiplication
operations performed in this mode are significantly more
difficult to implement than the addition. That is the reason
why we have decided to utilize De Sieno’s approach as a
basis for this hardware realization. On the other hand, in De
Sieno’s algorithm, the variables may be either positive or
negative. We have modified this algorithm to avoid this rather
inconvenient situation. In the current-mode circuits, it is much
easier to work with positive signals only, as this simplifies the
entire circuit and minimizes both the power dissipation and the
chip area. In this sense, the proposed method is also similar to
the FSCL method, mentioned in Section II, in which the term

standing in formula (1) is nonnegative. An overflow
problem encountered in the FSCL approach is not critical to
the implementation of the analog counter and the U-I converter
due to a natural hardware saturation of the counter signals, as
seen, for example, in Fig. 5(c).

In other words, the counter is unable to work with
higher than . Moreover, the direct current (dc) character-
istics of the U-I converter are nonlinear and its output current

saturates with an increase of . In this way, we natu-
rally approach the functionality of De Sieno’s algorithm without
having to implement in hardware formulas (4) and (7). Fur-
thermore, in the software implementation of De Sieno’s algo-
rithm, the relationship (4) is determined for all neurons. In the
case of neurons that did not win the competition, it introduces
a kind of “amnesty” mechanism as variables decrease for
all losing neurons. In the hardware implementation, such an
amnesty mechanism, depending on transistor sizes, results from
the leakage effect occurring in the analog memory cells used in
the counter. This occurs despite the fact that this leakage is small
enough to keep the circuit functional when clock frequency is
sufficiently high (0.5–2 MHz).

To summarize, the described features of the analog counter
allow for a very easy hardware realization of the proposed
conscience mechanism, which can be effectively adjusted to
the working conditions and used in networks with a different
number of neurons. The proposed circuit is characterized by
low power dissipation and low chip area. When the conscience
mechanism is active, the power consumed by a single CONS
blocks is 70 W, while the chip area of this block is equal to
1400 m . When the neural network works with 1-MHz clock
frequency, the CONS mechanism is active during the period of
1400 s, consuming at that time an average energy of 28–30 nJ
per neuron.

IV. VERIFICATION OF THE PROPOSED CONSCIENCE

MECHANISM

A. System Level Simulations

Initially, the performance of the proposed conscience mech-
anism has been verified for different values of the parameters
of a basic model of the network. Next, to make the obtained
results more real, additional parameters of the model, resulting
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Fig. 6. Simulation results (Matlab) showing the WTA NN learning for different
values of the� coefficient, i.e.: (a) for� � � (optimal case), (b) for� � ����,
and (c) for � � �, i.e., without the conscience mechanism. The input signals
are normalized to [1].

from circuit layout and physical phenomena, like charge injec-
tion effect of the used switches and memory leakage currents,
have been added to the basic model [11].

In the simulations, the results of which are presented in Fig. 6,
the initialization of the weights of the neurons has been per-
formed before starting the learning process. As indicated, these
weights are assigned small random values. In the ideal case, the
initial values should make the neurons “cover” an entire input
data space. The small initial values have been selected since we
wanted to be sure that the obtained results are mostly the result
of the use of the conscience mechanism itself.

The term responsible for modeling the leakage effect causes
that after several hundred presentations of the training pattern,
the information about dead neurons has been lost, thus zeroing

the weights of these neurons and in this way placing them close
to the origin of the data space.

To illustrate the performance of the neural network for
different settings of the conscience mechanism, an example
test with the training data containing 160 2-D learning vectors
representing 16 different classes has been illustrated in Fig. 6.
The network was composed of 16 neurons, so that the potential
number of the network output (classes) was also equal to 16. We
started with the initial value of the learning coefficient equal
to 0.9. After a few epochs, this value was reduced to 0.05. The
total number of all epochs was equal to 100. Fig. 6 illustrates
the influence of the strength of the conscience mechanism (the

coefficient) on the learning process.
An adequate value of this parameter must be determined ex-

perimentally for a given number of neurons in the network, al-
though the experiments have shown that there are some values
of this parameter that may be considered to be quite acceptable
in a certain range of the network size, i.e., the number of neu-
rons. Fig. 6(a) and (b) confirms that all neurons participate in
the learning process due to the conscience mechanism applied
there. However, only in the case shown in Fig. 6(a), the obtained
results are correct and all 16 neurons have become representa-
tives of the 16 regions of the input data space. In the case shown
in Fig. 6(b), the too weak conscience mechanism becomes re-
sponsible for the observed learning disruptions. The learning
process without this mechanism is demonstrated in Fig. 6(c).
As can be seen, only five neurons actively participated in the
learning process, winning in particular iterations. The others be-
came dead neurons.

Similar experiments have been completed for different sizes
of the network, different distributions of the training data, and
different values of the parameter.

To summarize, in Fig. 7, we show the values of the normalized
quantization error, which is regarded as a measure of the quality
of the training process. As expected, when the conscience mech-
anism is turned off (as approaches 0), then the quantization
error becomes the largest. Increasing the values of results
in the error decrease and finally network reaches the smallest
value of this error, for which all neurons are placed in proper re-
gions of the input data space. Further increase of this parameter
shows no impact on the learning process. The value of equal
to 1 may be considered as the optimal one, as in that case the
number of improperly placed neurons tends to 0.

As already mentioned, instead of the Euclidean distance we
have decided to use its square as a measure of dissimilarity be-
tween two vectors, which simplifies the resulting hardware real-
ization. To highlight the characteristic features of our approach,
consider the network input signals and values of neuron weights
to be normalized so that they are located in the range. Let
us denote by the square of the largest possible distance
between any two points in an -dimensional data space. The
value of , i.e., the square of the diagonal of this 0–1 hy-
percube, equals . For example, in 2-D data space, equals
2. If in such a space, the value of the parameter equals 1,
then the conscience mechanism block of the winning neuron al-
ways increases by ( for ) a distance

between the input vector and the weight vector of the
neuron. Under conditions like these, the conscience mechanism
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Fig. 7. Normalized quantization error as a function of the � coefficient and
different numbers of neurons in the network.

can be considered to be “strong” and, in most cases, it allows
for a proper placement of all neurons in the data space. On the
other hand, when the conscience mechanism is “weak,” some
neurons remain dead or are not properly placed after the training
has been completed. Example results illustrating this situation
are shown in Fig. 6(b) where . Here, about 25% of all
neurons are badly placed. For , the conscience mech-
anism increases the distance related to the winning neuron,
by a factor of . Nevertheless, these results are still
much better than those obtained when the conscience mecha-
nism is turned off, as shown in Fig. 6(c), where around 70% of
neurons are dead.

The simulation results presented in Figs. 6 and 7 are com-
pared with the measurements obtained in our prototype network.
In the presented experiments, the input signals of the WTA block
are in the range from 3 to 8 A, which means that their ampli-
tudes are equal to 5 A. The low value of 3 A is the bias cur-
rent, necessary to properly set up the working points of transis-
tors included in some other blocks of the network. To minimize
the power consumption, we have assumed the input signals to
be below 20 A.

One of the problems in current-mode circuits is the influence
of technological mismatches between transistor parameters on
a gain error of CM. Since in our network current mirrors are
basic elements, this occurrence affects precision of the overall
network significantly and needs to be minimized. One of the
possible solutions of this problem is to increase transistor sizes,
as this improves the matching between transistors [30]. Unfor-
tunately, this solution is insufficient in the case of small sig-
nals. Increasing transistor sizes, for constant values of CM cur-
rents, we decrease the value of the gate-to-source voltage of
these transistors. This increases the gain error [30] and makes
the matching improvement weaker. A careful analysis of this
problem revealed that from the precision point of view, transis-
tors with sizes (W/L) of ca. 3/1–5/1 m are the most suitable
for the assumed values of currents. Such transistors are unable
to conduct considerably larger currents, which imposes a limita-
tion on the strength of the conscience mechanism. For example,
setting the value of the parameter to be equal to 1 causes satu-
ration of the currents (being positioned close to the upper level)
after a few wins of each neuron. For this reason, in the exper-
iments performed at the circuit level, we have chosen smaller

Fig. 8. WTA signals: (a) analog counter signals used in the conscience mecha-
nism for the A, B, and C neurons, (b) EN (“enable”) signals at the WTA outputs
(shown in Fig. 1).

values of , i.e., those varying in between 0.05 and 0.1, that
are somewhat suboptimal as far as precision is concerned. This
effect will be discussed later in the paper.

The results shown in Fig. 7 are concerned with the software
model of the network. In this case, we do not observe the lim-
itations that occur in hardware implementation, as described
above. For this reason, the presented results for differ
significantly between both implementations. Here, the hardware
realization of the network does not work properly.

B. Circuit Level Postlayout Simulations

At this stage of the chip designing, electrical parameters of all
network components have been carefully verified and modified
to minimize, as far as possible, the negative influence of para-
sitic capacitances and leakage currents on the network proper-
ties and to minimize both its power consumption and chip area
occupation. Illustrative results of the HSPICE simulation car-
ried out at the transistor level are presented in Fig. 8.

In the performed test, the results of which are presented in
Fig. 8, a network with two inputs and three neurons has been
used. Both the training vector and the neuron weight vec-
tors , represented by currents expressed in A, are 2-D with
the following entries: , ,

, and .
The calculated “real” distances between particular vectors

and the training vector were constant during the entire test.
For these parameters, when the conscience mechanism was

turned off, only neuron won the competition, as the distance
between its weight vector and was always the smallest. For
the conscience mechanism being turned on, with all counters
being earlier zeroed, at the beginning of the competition neuron

was the winner and the value stored in the win counter as-
sociated with this neuron was increased, enlarging the distance.
After several presentations of the same training vector , the
resulting modified distance of this neuron to vector became
large enough to enable neuron to win. Next, neurons and
won in an alternate fashion. Finally, after the distances of neu-
rons and to vector became large enough, neuron also
won.
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Fig. 9. Influence of the conscience mechanism on the learning process for different values of the � parameter: (a) training input signals �, (c) and (e) the EDC
output currents � for different setting of the conscience mechanism (� parameter), (d) and (f) the network outputs for cases (c) and (e), respectively; (b) results
for the conscience mechanism being inactive; (g) the WTA block input in the early phase of the learning process—the plot has been zoomed out from the plot (e)
for better illustration.

The results in Fig. 8 concern optimal settings of the con-
science mechanism. When the values of were too small, then
neuron won more frequently, excluding other neurons from
the competition for a long time.

On the other hand, the values of larger than the optimal
setup imply greater currents at the inputs of the WTA circuit
which unnecessarily increases the power dissipation of the cir-
cuit, while the system performance is left unchanged. This ob-
servation is in agreement with the results for the former system
level simulations presented in Fig. 7.

C. Measurement Results

Some experimental results of the WTA NN implemented on
a chip in the CMOS 0.18- m process and learned on silicon are

presented in Fig. 9. The prototype network consists of four neu-
rons, each having three inputs . Measurement results
that illustrate an overall training process have been reported in
[13]. Here, we focus on the results that concern an influence of
the conscience mechanism on the learning process. The input
currents ( , , and ) are pulse signals ranging from 1 to 3

A, with the frequencies of 5, 3, and 7 kHz, respectively, while
the network clock frequency is equal to 1 MHz. The first stage of
this process is an initialization that takes 150 s [12]. In the fol-
lowing 300 s, the learning process is aided by the CONS mech-
anism and the EDC output currents are increased by adding
a current component coming from this mechanism. After 450

s, the CONS mechanism is turned off that zeroes the analog
counters and decreases the WTA input currents as shown
in Fig. 9(c), (e), and (g).
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Fig. 10. Layout of the experimental current-mode analog network designed in
CMOS 0.018-�m technology. The circuit sizes are 320� 200 �m .

The input periodical signals shown in Fig. 9(a) have been
selected in such a way that we obtain a representative set of
the input vectors . Fig. 9(c) and (e) illustrates the resulting
waveforms of the EDC output currents of particular neurons,
increased by currents supplied by the conscience mechanism
block, according to (11), for two values of the dc voltage

that controls the parameter of the CONS mechanism.
Fig. 9(d) and (f) illustrates the network output signals in cases
(c) and (e), respectively. The results in Fig. 9(c) and (d) concern
a very weak conscience mechanism. The amplitude of the

currents, i.e., the equivalent of parameter, equals 5
A. The CONS mechanism block, during its activity period,

increases these currents by about 4 A, i.e., 80% of . This
means that an effective value of the parameter is equal to
0.032. In this case, two neurons remain dead and therefore this
situation is not optimal at all. The results in Fig. 9(e) and (f)
deal with a stronger CONS mechanism, which enlarges the
currents by ca. 7.5 A, i.e., by 150% of . The effective
value of the parameter used here is equal to 0.061. This value
allows for activating all neurons in the network and therefore
this case can be considered as quasi-optimal. The results shown
in Fig. 9(b) refer to a situation where the CONS mechanism
is not active. As a result, three neurons remained dead. The
measurement results are in good agreement with those obtained
in simulation studies.

It is both interesting and useful to compare the performance of
analog networks with their digital counterparts as presented, for
example, in [19]. Analog networks are substantially more diffi-
cult in realization and the undertaking of this effort makes sense
if such networks are able to offer much better performance. We
compared the performance (expressed in terms of power dis-
sipation and data rate) of our network implemented in CMOS
technology and a comparable network with the same number of
inputs and outputs implemented in software (C++). The proto-
type analog network, at the clock frequency of 1 MHz, was able
to operate as fast as a counterpart network working on a typical
PC with the clock frequency of 2 GHz. These results have been
thoroughly verified for a wide range of the neural network pa-
rameters. The calculation time in software networks increases
approximately linearly with the number of channels that equals

. In the hardware implemented WTA NN, computing time
is independent of the number of channels, which becomes an
important advantage of such implementation.

It is also important to stress that the proposed network con-
sumes the power of 1 mW when the CONS mechanism is ac-
tive and only 700 W without this mechanism. This is only a
small fraction of the power consumed by a PC running the same
learning task. Since the presented network is the first prototype,
being designed to verify the concept of the particular compo-
nents, there is still plenty of room for further optimization with
regard to power dissipation.

The internal structure (layout) of the network is shown in
Fig. 10. The circuit realized in the CMOS 0.18- m process oc-
cupies an area of 0.07 mm .

The obtained results allow for making prediction of the chip
area in case of the larger number of neurons. A single neuron
with weights consists of identical channels that in current
mode technique are connected by simply shorting their outputs
together. In the prototype chip, we have included 12 identical
channels grouped into four neurons. In case of two neurons with
six inputs or six neurons with two inputs the number of channels
will remain the same and the overall chip area will not signifi-
cantly change. The number of neurons has the influence on the
area of the WTA as well as the CONS blocks, which increases
linearly with the number of neurons in the network.

This demonstrates that the realization of larger networks with
hundreds of neurons is feasible and could incur low cost.

V. CONCLUSION

This paper presents both the idea and chip implementations
of a conscience mechanism used to improve learning of WTA
networks, i.e., to eliminate dead neurons.

The general idea of the proposed mechanism is based on
the use of analog counters. The associated advantage is that
the counting range (modulo) of analog counters can be easily
controlled in a wide range by means of an external voltage.
The paper offers one of the first attempts at a comprehensive
design and implementation involving not only simulations of
the software model but also the use of measurement coming
from the real hardware. The results confirm that the conscience
mechanism has a very positive impact on the effectiveness of
learning of the WTA neural network. The prototyped small net-
work shows that the implementing of a large WTA NN in analog
hardware (or Kohonen NN when the neighborhood mechanism
is additionally used) capable of power efficient learning on sil-
icon on a large scale is a realistic endeavor.
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Jun. 2008, pp. 197–201.

[33] M. Kolasa and R. Długosz, “Parallel asynchronous neighborhood
mechanism for WTM Kohonen network implemented in CMOS tech-
nology,” in Proc. Eur. Symp. Artif. Neural Netw., Bruges, Belgium,
Apr. 2008, pp. 331–336.
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